Copied to
clipboard

G = D2024D4order 320 = 26·5

2nd semidirect product of D20 and D4 acting through Inn(D20)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2024D4, C42.109D10, C10.592- 1+4, (C4×D4)⋊13D5, (D4×C20)⋊15C2, (C4×D20)⋊29C2, C202(C4○D4), C43(C4○D20), C202D48C2, C52(D46D4), C4.140(D4×D5), C4⋊C4.316D10, C202Q824C2, D10.38(C2×D4), C20.346(C2×D4), (C2×D4).214D10, (C2×C10).95C24, C10.50(C22×D4), D10.12D46C2, C20.48D420C2, (C2×C20).783C23, (C4×C20).152C22, C22⋊C4.110D10, (C22×C4).208D10, C23.95(C22×D5), (C2×D20).295C22, (D4×C10).257C22, C4⋊Dic5.199C22, (C2×Dic5).41C23, C22.120(C23×D5), C23.D5.12C22, D10⋊C4.98C22, (C22×C20).107C22, (C22×C10).165C23, C10.D4.65C22, (C22×D5).183C23, C2.16(D4.10D10), (C2×Dic10).247C22, C2.23(C2×D4×D5), (D5×C4⋊C4)⋊15C2, (C2×C4○D20)⋊8C2, C10.42(C2×C4○D4), C2.46(C2×C4○D20), (C2×C4×D5).73C22, (C5×C4⋊C4).326C22, (C2×C4).579(C22×D5), (C2×C5⋊D4).121C22, (C5×C22⋊C4).122C22, SmallGroup(320,1223)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2024D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2024D4
C5C2×C10 — D2024D4
C1C22C4×D4

Generators and relations for D2024D4
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 1030 in 292 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C4⋊C4, C4×D4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, D46D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, D4×C10, C202Q8, C4×D20, D10.12D4, D5×C4⋊C4, C20.48D4, C202D4, D4×C20, C2×C4○D20, D2024D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, C22×D5, D46D4, C4○D20, D4×D5, C23×D5, C2×C4○D20, C2×D4×D5, D4.10D10, D2024D4

Smallest permutation representation of D2024D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(36 40)(37 39)(41 45)(42 44)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(61 63)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)(81 87)(82 86)(83 85)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)(102 120)(103 119)(104 118)(105 117)(106 116)(107 115)(108 114)(109 113)(110 112)(121 129)(122 128)(123 127)(124 126)(130 140)(131 139)(132 138)(133 137)(134 136)(141 155)(142 154)(143 153)(144 152)(145 151)(146 150)(147 149)(156 160)(157 159)
(1 21 151 65)(2 22 152 66)(3 23 153 67)(4 24 154 68)(5 25 155 69)(6 26 156 70)(7 27 157 71)(8 28 158 72)(9 29 159 73)(10 30 160 74)(11 31 141 75)(12 32 142 76)(13 33 143 77)(14 34 144 78)(15 35 145 79)(16 36 146 80)(17 37 147 61)(18 38 148 62)(19 39 149 63)(20 40 150 64)(41 119 133 82)(42 120 134 83)(43 101 135 84)(44 102 136 85)(45 103 137 86)(46 104 138 87)(47 105 139 88)(48 106 140 89)(49 107 121 90)(50 108 122 91)(51 109 123 92)(52 110 124 93)(53 111 125 94)(54 112 126 95)(55 113 127 96)(56 114 128 97)(57 115 129 98)(58 116 130 99)(59 117 131 100)(60 118 132 81)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 82)(22 83)(23 84)(24 85)(25 86)(26 87)(27 88)(28 89)(29 90)(30 91)(31 92)(32 93)(33 94)(34 95)(35 96)(36 97)(37 98)(38 99)(39 100)(40 81)(61 115)(62 116)(63 117)(64 118)(65 119)(66 120)(67 101)(68 102)(69 103)(70 104)(71 105)(72 106)(73 107)(74 108)(75 109)(76 110)(77 111)(78 112)(79 113)(80 114)(121 159)(122 160)(123 141)(124 142)(125 143)(126 144)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,63)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,155)(142,154)(143,153)(144,152)(145,151)(146,150)(147,149)(156,160)(157,159), (1,21,151,65)(2,22,152,66)(3,23,153,67)(4,24,154,68)(5,25,155,69)(6,26,156,70)(7,27,157,71)(8,28,158,72)(9,29,159,73)(10,30,160,74)(11,31,141,75)(12,32,142,76)(13,33,143,77)(14,34,144,78)(15,35,145,79)(16,36,146,80)(17,37,147,61)(18,38,148,62)(19,39,149,63)(20,40,150,64)(41,119,133,82)(42,120,134,83)(43,101,135,84)(44,102,136,85)(45,103,137,86)(46,104,138,87)(47,105,139,88)(48,106,140,89)(49,107,121,90)(50,108,122,91)(51,109,123,92)(52,110,124,93)(53,111,125,94)(54,112,126,95)(55,113,127,96)(56,114,128,97)(57,115,129,98)(58,116,130,99)(59,117,131,100)(60,118,132,81), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,81)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,63)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,155)(142,154)(143,153)(144,152)(145,151)(146,150)(147,149)(156,160)(157,159), (1,21,151,65)(2,22,152,66)(3,23,153,67)(4,24,154,68)(5,25,155,69)(6,26,156,70)(7,27,157,71)(8,28,158,72)(9,29,159,73)(10,30,160,74)(11,31,141,75)(12,32,142,76)(13,33,143,77)(14,34,144,78)(15,35,145,79)(16,36,146,80)(17,37,147,61)(18,38,148,62)(19,39,149,63)(20,40,150,64)(41,119,133,82)(42,120,134,83)(43,101,135,84)(44,102,136,85)(45,103,137,86)(46,104,138,87)(47,105,139,88)(48,106,140,89)(49,107,121,90)(50,108,122,91)(51,109,123,92)(52,110,124,93)(53,111,125,94)(54,112,126,95)(55,113,127,96)(56,114,128,97)(57,115,129,98)(58,116,130,99)(59,117,131,100)(60,118,132,81), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,82)(22,83)(23,84)(24,85)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,99)(39,100)(40,81)(61,115)(62,116)(63,117)(64,118)(65,119)(66,120)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(36,40),(37,39),(41,45),(42,44),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(61,63),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73),(81,87),(82,86),(83,85),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95),(102,120),(103,119),(104,118),(105,117),(106,116),(107,115),(108,114),(109,113),(110,112),(121,129),(122,128),(123,127),(124,126),(130,140),(131,139),(132,138),(133,137),(134,136),(141,155),(142,154),(143,153),(144,152),(145,151),(146,150),(147,149),(156,160),(157,159)], [(1,21,151,65),(2,22,152,66),(3,23,153,67),(4,24,154,68),(5,25,155,69),(6,26,156,70),(7,27,157,71),(8,28,158,72),(9,29,159,73),(10,30,160,74),(11,31,141,75),(12,32,142,76),(13,33,143,77),(14,34,144,78),(15,35,145,79),(16,36,146,80),(17,37,147,61),(18,38,148,62),(19,39,149,63),(20,40,150,64),(41,119,133,82),(42,120,134,83),(43,101,135,84),(44,102,136,85),(45,103,137,86),(46,104,138,87),(47,105,139,88),(48,106,140,89),(49,107,121,90),(50,108,122,91),(51,109,123,92),(52,110,124,93),(53,111,125,94),(54,112,126,95),(55,113,127,96),(56,114,128,97),(57,115,129,98),(58,116,130,99),(59,117,131,100),(60,118,132,81)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,82),(22,83),(23,84),(24,85),(25,86),(26,87),(27,88),(28,89),(29,90),(30,91),(31,92),(32,93),(33,94),(34,95),(35,96),(36,97),(37,98),(38,99),(39,100),(40,81),(61,115),(62,116),(63,117),(64,118),(65,119),(66,120),(67,101),(68,102),(69,103),(70,104),(71,105),(72,106),(73,107),(74,108),(75,109),(76,110),(77,111),(78,112),(79,113),(80,114),(121,159),(122,160),(123,141),(124,142),(125,143),(126,144),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J···4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224···444···45510···1010···1020···2020···20
size111144101010102···2420···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10C4○D202- 1+4D4×D5D4.10D10
kernelD2024D4C202Q8C4×D20D10.12D4D5×C4⋊C4C20.48D4C202D4D4×C20C2×C4○D20D20C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C4C2
# reps1114222124242424216144

Matrix representation of D2024D4 in GL6(𝔽41)

3200000
3790000
00344000
008100
000010
000001
,
40250000
010000
00404000
000100
000010
000001
,
100000
010000
0040000
0004000
0000040
000010
,
100000
5400000
0040000
0004000
000010
0000040

G:=sub<GL(6,GF(41))| [32,37,0,0,0,0,0,9,0,0,0,0,0,0,34,8,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,25,1,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[1,5,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

D2024D4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{24}D_4
% in TeX

G:=Group("D20:24D4");
// GroupNames label

G:=SmallGroup(320,1223);
// by ID

G=gap.SmallGroup(320,1223);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽