Copied to
clipboard

G = Dic1010D4order 320 = 26·5

3rd semidirect product of Dic10 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1010D4, C42.142D10, C10.912- 1+4, C4.71(D4×D5), (C4×D20)⋊44C2, C55(Q85D4), C20.64(C2×D4), C202D434C2, C4.4D411D5, D1015(C4○D4), D10⋊D441C2, D103Q829C2, (C4×Dic10)⋊45C2, (C2×D4).174D10, (C2×C20).81C23, (C2×Q8).137D10, C22⋊C4.73D10, Dic5.52(C2×D4), C10.91(C22×D4), Dic54D430C2, (C2×C10).221C24, (C4×C20).186C22, C23.43(C22×D5), Dic5.5D440C2, (D4×C10).156C22, (C2×D20).231C22, C4⋊Dic5.377C22, (C22×C10).51C23, (Q8×C10).127C22, C22.242(C23×D5), Dic5.14D441C2, C23.D5.55C22, (C4×Dic5).234C22, (C2×Dic5).263C23, (C22×D5).226C23, C2.52(D4.10D10), D10⋊C4.135C22, (C2×Dic10).305C22, C10.D4.121C22, (C22×Dic5).143C22, (C2×Q8×D5)⋊11C2, C2.64(C2×D4×D5), C2.77(D5×C4○D4), (C2×D42D5)⋊19C2, C10.188(C2×C4○D4), (C5×C4.4D4)⋊13C2, (C2×C4×D5).130C22, (C2×C4).196(C22×D5), (C2×C5⋊D4).60C22, (C5×C22⋊C4).65C22, SmallGroup(320,1349)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1010D4
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — Dic1010D4
C5C2×C10 — Dic1010D4
C1C22C4.4D4

Generators and relations for Dic1010D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a9, cbc-1=dbd=a10b, dcd=c-1 >

Subgroups: 1046 in 290 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C4.4D4, C4.4D4, C22×Q8, C2×C4○D4, Dic10, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, Q85D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, D42D5, Q8×D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C4×Dic10, C4×D20, Dic5.14D4, Dic54D4, D10⋊D4, Dic5.5D4, C202D4, D103Q8, C5×C4.4D4, C2×D42D5, C2×Q8×D5, Dic1010D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2- 1+4, C22×D5, Q85D4, D4×D5, C23×D5, C2×D4×D5, D5×C4○D4, D4.10D10, Dic1010D4

Smallest permutation representation of Dic1010D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 156 11 146)(2 155 12 145)(3 154 13 144)(4 153 14 143)(5 152 15 142)(6 151 16 141)(7 150 17 160)(8 149 18 159)(9 148 19 158)(10 147 20 157)(21 70 31 80)(22 69 32 79)(23 68 33 78)(24 67 34 77)(25 66 35 76)(26 65 36 75)(27 64 37 74)(28 63 38 73)(29 62 39 72)(30 61 40 71)(41 139 51 129)(42 138 52 128)(43 137 53 127)(44 136 54 126)(45 135 55 125)(46 134 56 124)(47 133 57 123)(48 132 58 122)(49 131 59 121)(50 130 60 140)(81 103 91 113)(82 102 92 112)(83 101 93 111)(84 120 94 110)(85 119 95 109)(86 118 96 108)(87 117 97 107)(88 116 98 106)(89 115 99 105)(90 114 100 104)
(1 85 24 55)(2 86 25 56)(3 87 26 57)(4 88 27 58)(5 89 28 59)(6 90 29 60)(7 91 30 41)(8 92 31 42)(9 93 32 43)(10 94 33 44)(11 95 34 45)(12 96 35 46)(13 97 36 47)(14 98 37 48)(15 99 38 49)(16 100 39 50)(17 81 40 51)(18 82 21 52)(19 83 22 53)(20 84 23 54)(61 129 150 103)(62 130 151 104)(63 131 152 105)(64 132 153 106)(65 133 154 107)(66 134 155 108)(67 135 156 109)(68 136 157 110)(69 137 158 111)(70 138 159 112)(71 139 160 113)(72 140 141 114)(73 121 142 115)(74 122 143 116)(75 123 144 117)(76 124 145 118)(77 125 146 119)(78 126 147 120)(79 127 148 101)(80 128 149 102)
(1 24)(2 33)(3 22)(4 31)(5 40)(6 29)(7 38)(8 27)(9 36)(10 25)(11 34)(12 23)(13 32)(14 21)(15 30)(16 39)(17 28)(18 37)(19 26)(20 35)(41 49)(42 58)(43 47)(44 56)(46 54)(48 52)(51 59)(53 57)(61 152)(62 141)(63 150)(64 159)(65 148)(66 157)(67 146)(68 155)(69 144)(70 153)(71 142)(72 151)(73 160)(74 149)(75 158)(76 147)(77 156)(78 145)(79 154)(80 143)(81 89)(82 98)(83 87)(84 96)(86 94)(88 92)(91 99)(93 97)(101 107)(102 116)(103 105)(104 114)(106 112)(108 110)(109 119)(111 117)(113 115)(118 120)(121 139)(122 128)(123 137)(124 126)(125 135)(127 133)(129 131)(130 140)(132 138)(134 136)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,156,11,146)(2,155,12,145)(3,154,13,144)(4,153,14,143)(5,152,15,142)(6,151,16,141)(7,150,17,160)(8,149,18,159)(9,148,19,158)(10,147,20,157)(21,70,31,80)(22,69,32,79)(23,68,33,78)(24,67,34,77)(25,66,35,76)(26,65,36,75)(27,64,37,74)(28,63,38,73)(29,62,39,72)(30,61,40,71)(41,139,51,129)(42,138,52,128)(43,137,53,127)(44,136,54,126)(45,135,55,125)(46,134,56,124)(47,133,57,123)(48,132,58,122)(49,131,59,121)(50,130,60,140)(81,103,91,113)(82,102,92,112)(83,101,93,111)(84,120,94,110)(85,119,95,109)(86,118,96,108)(87,117,97,107)(88,116,98,106)(89,115,99,105)(90,114,100,104), (1,85,24,55)(2,86,25,56)(3,87,26,57)(4,88,27,58)(5,89,28,59)(6,90,29,60)(7,91,30,41)(8,92,31,42)(9,93,32,43)(10,94,33,44)(11,95,34,45)(12,96,35,46)(13,97,36,47)(14,98,37,48)(15,99,38,49)(16,100,39,50)(17,81,40,51)(18,82,21,52)(19,83,22,53)(20,84,23,54)(61,129,150,103)(62,130,151,104)(63,131,152,105)(64,132,153,106)(65,133,154,107)(66,134,155,108)(67,135,156,109)(68,136,157,110)(69,137,158,111)(70,138,159,112)(71,139,160,113)(72,140,141,114)(73,121,142,115)(74,122,143,116)(75,123,144,117)(76,124,145,118)(77,125,146,119)(78,126,147,120)(79,127,148,101)(80,128,149,102), (1,24)(2,33)(3,22)(4,31)(5,40)(6,29)(7,38)(8,27)(9,36)(10,25)(11,34)(12,23)(13,32)(14,21)(15,30)(16,39)(17,28)(18,37)(19,26)(20,35)(41,49)(42,58)(43,47)(44,56)(46,54)(48,52)(51,59)(53,57)(61,152)(62,141)(63,150)(64,159)(65,148)(66,157)(67,146)(68,155)(69,144)(70,153)(71,142)(72,151)(73,160)(74,149)(75,158)(76,147)(77,156)(78,145)(79,154)(80,143)(81,89)(82,98)(83,87)(84,96)(86,94)(88,92)(91,99)(93,97)(101,107)(102,116)(103,105)(104,114)(106,112)(108,110)(109,119)(111,117)(113,115)(118,120)(121,139)(122,128)(123,137)(124,126)(125,135)(127,133)(129,131)(130,140)(132,138)(134,136)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,156,11,146)(2,155,12,145)(3,154,13,144)(4,153,14,143)(5,152,15,142)(6,151,16,141)(7,150,17,160)(8,149,18,159)(9,148,19,158)(10,147,20,157)(21,70,31,80)(22,69,32,79)(23,68,33,78)(24,67,34,77)(25,66,35,76)(26,65,36,75)(27,64,37,74)(28,63,38,73)(29,62,39,72)(30,61,40,71)(41,139,51,129)(42,138,52,128)(43,137,53,127)(44,136,54,126)(45,135,55,125)(46,134,56,124)(47,133,57,123)(48,132,58,122)(49,131,59,121)(50,130,60,140)(81,103,91,113)(82,102,92,112)(83,101,93,111)(84,120,94,110)(85,119,95,109)(86,118,96,108)(87,117,97,107)(88,116,98,106)(89,115,99,105)(90,114,100,104), (1,85,24,55)(2,86,25,56)(3,87,26,57)(4,88,27,58)(5,89,28,59)(6,90,29,60)(7,91,30,41)(8,92,31,42)(9,93,32,43)(10,94,33,44)(11,95,34,45)(12,96,35,46)(13,97,36,47)(14,98,37,48)(15,99,38,49)(16,100,39,50)(17,81,40,51)(18,82,21,52)(19,83,22,53)(20,84,23,54)(61,129,150,103)(62,130,151,104)(63,131,152,105)(64,132,153,106)(65,133,154,107)(66,134,155,108)(67,135,156,109)(68,136,157,110)(69,137,158,111)(70,138,159,112)(71,139,160,113)(72,140,141,114)(73,121,142,115)(74,122,143,116)(75,123,144,117)(76,124,145,118)(77,125,146,119)(78,126,147,120)(79,127,148,101)(80,128,149,102), (1,24)(2,33)(3,22)(4,31)(5,40)(6,29)(7,38)(8,27)(9,36)(10,25)(11,34)(12,23)(13,32)(14,21)(15,30)(16,39)(17,28)(18,37)(19,26)(20,35)(41,49)(42,58)(43,47)(44,56)(46,54)(48,52)(51,59)(53,57)(61,152)(62,141)(63,150)(64,159)(65,148)(66,157)(67,146)(68,155)(69,144)(70,153)(71,142)(72,151)(73,160)(74,149)(75,158)(76,147)(77,156)(78,145)(79,154)(80,143)(81,89)(82,98)(83,87)(84,96)(86,94)(88,92)(91,99)(93,97)(101,107)(102,116)(103,105)(104,114)(106,112)(108,110)(109,119)(111,117)(113,115)(118,120)(121,139)(122,128)(123,137)(124,126)(125,135)(127,133)(129,131)(130,140)(132,138)(134,136) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,156,11,146),(2,155,12,145),(3,154,13,144),(4,153,14,143),(5,152,15,142),(6,151,16,141),(7,150,17,160),(8,149,18,159),(9,148,19,158),(10,147,20,157),(21,70,31,80),(22,69,32,79),(23,68,33,78),(24,67,34,77),(25,66,35,76),(26,65,36,75),(27,64,37,74),(28,63,38,73),(29,62,39,72),(30,61,40,71),(41,139,51,129),(42,138,52,128),(43,137,53,127),(44,136,54,126),(45,135,55,125),(46,134,56,124),(47,133,57,123),(48,132,58,122),(49,131,59,121),(50,130,60,140),(81,103,91,113),(82,102,92,112),(83,101,93,111),(84,120,94,110),(85,119,95,109),(86,118,96,108),(87,117,97,107),(88,116,98,106),(89,115,99,105),(90,114,100,104)], [(1,85,24,55),(2,86,25,56),(3,87,26,57),(4,88,27,58),(5,89,28,59),(6,90,29,60),(7,91,30,41),(8,92,31,42),(9,93,32,43),(10,94,33,44),(11,95,34,45),(12,96,35,46),(13,97,36,47),(14,98,37,48),(15,99,38,49),(16,100,39,50),(17,81,40,51),(18,82,21,52),(19,83,22,53),(20,84,23,54),(61,129,150,103),(62,130,151,104),(63,131,152,105),(64,132,153,106),(65,133,154,107),(66,134,155,108),(67,135,156,109),(68,136,157,110),(69,137,158,111),(70,138,159,112),(71,139,160,113),(72,140,141,114),(73,121,142,115),(74,122,143,116),(75,123,144,117),(76,124,145,118),(77,125,146,119),(78,126,147,120),(79,127,148,101),(80,128,149,102)], [(1,24),(2,33),(3,22),(4,31),(5,40),(6,29),(7,38),(8,27),(9,36),(10,25),(11,34),(12,23),(13,32),(14,21),(15,30),(16,39),(17,28),(18,37),(19,26),(20,35),(41,49),(42,58),(43,47),(44,56),(46,54),(48,52),(51,59),(53,57),(61,152),(62,141),(63,150),(64,159),(65,148),(66,157),(67,146),(68,155),(69,144),(70,153),(71,142),(72,151),(73,160),(74,149),(75,158),(76,147),(77,156),(78,145),(79,154),(80,143),(81,89),(82,98),(83,87),(84,96),(86,94),(88,92),(91,99),(93,97),(101,107),(102,116),(103,105),(104,114),(106,112),(108,110),(109,119),(111,117),(113,115),(118,120),(121,139),(122,128),(123,137),(124,126),(125,135),(127,133),(129,131),(130,140),(132,138),(134,136)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H···4M4N4O4P5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222244444444···44445510···101010101020···2020202020
size111144101020222244410···10202020222···288884···48888

53 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102- 1+4D4×D5D5×C4○D4D4.10D10
kernelDic1010D4C4×Dic10C4×D20Dic5.14D4Dic54D4D10⋊D4Dic5.5D4C202D4D103Q8C5×C4.4D4C2×D42D5C2×Q8×D5Dic10C4.4D4D10C42C22⋊C4C2×D4C2×Q8C10C4C2C2
# reps11122221111142428221444

Matrix representation of Dic1010D4 in GL6(𝔽41)

7400000
100000
001000
000100
000090
00003232
,
3470000
4070000
0040000
0004000
00004039
000011
,
100000
010000
000100
0040000
000010
00004040
,
3470000
4070000
0040000
000100
000010
00004040

G:=sub<GL(6,GF(41))| [7,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,32,0,0,0,0,0,32],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,40,0,0,0,0,0,40] >;

Dic1010D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_{10}D_4
% in TeX

G:=Group("Dic10:10D4");
// GroupNames label

G:=SmallGroup(320,1349);
// by ID

G=gap.SmallGroup(320,1349);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,1571,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^9,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽