metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic10⋊11D4, C42.167D10, C10.782+ 1+4, C4⋊1D4⋊7D5, C4.72(D4×D5), (C4×D20)⋊50C2, C20⋊5(C4○D4), C5⋊4(Q8⋊6D4), C20.67(C2×D4), C20⋊2D4⋊37C2, C4⋊1(D4⋊2D5), C20⋊D4⋊27C2, (D4×Dic5)⋊35C2, (C4×Dic10)⋊51C2, (C2×D4).115D10, Dic5.53(C2×D4), C10.96(C22×D4), Dic5⋊D4⋊37C2, (C2×C10).262C24, (C2×C20).636C23, (C4×C20).204C22, C2.82(D4⋊6D10), C23.68(C22×D5), (C2×D20).278C22, (D4×C10).214C22, C4⋊Dic5.381C22, (C22×C10).76C23, C22.283(C23×D5), C23.D5.73C22, (C2×Dic5).279C23, (C4×Dic5).163C22, (C22×D5).116C23, D10⋊C4.149C22, (C2×Dic10).309C22, C10.D4.164C22, (C22×Dic5).158C22, C2.69(C2×D4×D5), (C5×C4⋊1D4)⋊9C2, C10.97(C2×C4○D4), (C2×D4⋊2D5)⋊22C2, C2.61(C2×D4⋊2D5), (C2×C4×D5).148C22, (C2×C4).598(C22×D5), (C2×C5⋊D4).78C22, SmallGroup(320,1390)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic10⋊11D4
G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a11, bc=cb, dbd=a10b, dcd=c-1 >
Subgroups: 1158 in 312 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×D4, C4×Q8, C4⋊D4, C4⋊1D4, C4⋊1D4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, Q8⋊6D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C2×Dic10, C2×C4×D5, C2×D20, D4⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, C4×Dic10, C4×D20, D4×Dic5, C20⋊2D4, Dic5⋊D4, C20⋊D4, C5×C4⋊1D4, C2×D4⋊2D5, Dic10⋊11D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2+ 1+4, C22×D5, Q8⋊6D4, D4×D5, D4⋊2D5, C23×D5, C2×D4×D5, C2×D4⋊2D5, D4⋊6D10, Dic10⋊11D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 53 11 43)(2 52 12 42)(3 51 13 41)(4 50 14 60)(5 49 15 59)(6 48 16 58)(7 47 17 57)(8 46 18 56)(9 45 19 55)(10 44 20 54)(21 153 31 143)(22 152 32 142)(23 151 33 141)(24 150 34 160)(25 149 35 159)(26 148 36 158)(27 147 37 157)(28 146 38 156)(29 145 39 155)(30 144 40 154)(61 114 71 104)(62 113 72 103)(63 112 73 102)(64 111 74 101)(65 110 75 120)(66 109 76 119)(67 108 77 118)(68 107 78 117)(69 106 79 116)(70 105 80 115)(81 131 91 121)(82 130 92 140)(83 129 93 139)(84 128 94 138)(85 127 95 137)(86 126 96 136)(87 125 97 135)(88 124 98 134)(89 123 99 133)(90 122 100 132)
(1 135 40 76)(2 136 21 77)(3 137 22 78)(4 138 23 79)(5 139 24 80)(6 140 25 61)(7 121 26 62)(8 122 27 63)(9 123 28 64)(10 124 29 65)(11 125 30 66)(12 126 31 67)(13 127 32 68)(14 128 33 69)(15 129 34 70)(16 130 35 71)(17 131 36 72)(18 132 37 73)(19 133 38 74)(20 134 39 75)(41 95 142 107)(42 96 143 108)(43 97 144 109)(44 98 145 110)(45 99 146 111)(46 100 147 112)(47 81 148 113)(48 82 149 114)(49 83 150 115)(50 84 151 116)(51 85 152 117)(52 86 153 118)(53 87 154 119)(54 88 155 120)(55 89 156 101)(56 90 157 102)(57 91 158 103)(58 92 159 104)(59 93 160 105)(60 94 141 106)
(1 119)(2 110)(3 101)(4 112)(5 103)(6 114)(7 105)(8 116)(9 107)(10 118)(11 109)(12 120)(13 111)(14 102)(15 113)(16 104)(17 115)(18 106)(19 117)(20 108)(21 98)(22 89)(23 100)(24 91)(25 82)(26 93)(27 84)(28 95)(29 86)(30 97)(31 88)(32 99)(33 90)(34 81)(35 92)(36 83)(37 94)(38 85)(39 96)(40 87)(41 64)(42 75)(43 66)(44 77)(45 68)(46 79)(47 70)(48 61)(49 72)(50 63)(51 74)(52 65)(53 76)(54 67)(55 78)(56 69)(57 80)(58 71)(59 62)(60 73)(121 160)(122 151)(123 142)(124 153)(125 144)(126 155)(127 146)(128 157)(129 148)(130 159)(131 150)(132 141)(133 152)(134 143)(135 154)(136 145)(137 156)(138 147)(139 158)(140 149)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,53,11,43)(2,52,12,42)(3,51,13,41)(4,50,14,60)(5,49,15,59)(6,48,16,58)(7,47,17,57)(8,46,18,56)(9,45,19,55)(10,44,20,54)(21,153,31,143)(22,152,32,142)(23,151,33,141)(24,150,34,160)(25,149,35,159)(26,148,36,158)(27,147,37,157)(28,146,38,156)(29,145,39,155)(30,144,40,154)(61,114,71,104)(62,113,72,103)(63,112,73,102)(64,111,74,101)(65,110,75,120)(66,109,76,119)(67,108,77,118)(68,107,78,117)(69,106,79,116)(70,105,80,115)(81,131,91,121)(82,130,92,140)(83,129,93,139)(84,128,94,138)(85,127,95,137)(86,126,96,136)(87,125,97,135)(88,124,98,134)(89,123,99,133)(90,122,100,132), (1,135,40,76)(2,136,21,77)(3,137,22,78)(4,138,23,79)(5,139,24,80)(6,140,25,61)(7,121,26,62)(8,122,27,63)(9,123,28,64)(10,124,29,65)(11,125,30,66)(12,126,31,67)(13,127,32,68)(14,128,33,69)(15,129,34,70)(16,130,35,71)(17,131,36,72)(18,132,37,73)(19,133,38,74)(20,134,39,75)(41,95,142,107)(42,96,143,108)(43,97,144,109)(44,98,145,110)(45,99,146,111)(46,100,147,112)(47,81,148,113)(48,82,149,114)(49,83,150,115)(50,84,151,116)(51,85,152,117)(52,86,153,118)(53,87,154,119)(54,88,155,120)(55,89,156,101)(56,90,157,102)(57,91,158,103)(58,92,159,104)(59,93,160,105)(60,94,141,106), (1,119)(2,110)(3,101)(4,112)(5,103)(6,114)(7,105)(8,116)(9,107)(10,118)(11,109)(12,120)(13,111)(14,102)(15,113)(16,104)(17,115)(18,106)(19,117)(20,108)(21,98)(22,89)(23,100)(24,91)(25,82)(26,93)(27,84)(28,95)(29,86)(30,97)(31,88)(32,99)(33,90)(34,81)(35,92)(36,83)(37,94)(38,85)(39,96)(40,87)(41,64)(42,75)(43,66)(44,77)(45,68)(46,79)(47,70)(48,61)(49,72)(50,63)(51,74)(52,65)(53,76)(54,67)(55,78)(56,69)(57,80)(58,71)(59,62)(60,73)(121,160)(122,151)(123,142)(124,153)(125,144)(126,155)(127,146)(128,157)(129,148)(130,159)(131,150)(132,141)(133,152)(134,143)(135,154)(136,145)(137,156)(138,147)(139,158)(140,149)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,53,11,43)(2,52,12,42)(3,51,13,41)(4,50,14,60)(5,49,15,59)(6,48,16,58)(7,47,17,57)(8,46,18,56)(9,45,19,55)(10,44,20,54)(21,153,31,143)(22,152,32,142)(23,151,33,141)(24,150,34,160)(25,149,35,159)(26,148,36,158)(27,147,37,157)(28,146,38,156)(29,145,39,155)(30,144,40,154)(61,114,71,104)(62,113,72,103)(63,112,73,102)(64,111,74,101)(65,110,75,120)(66,109,76,119)(67,108,77,118)(68,107,78,117)(69,106,79,116)(70,105,80,115)(81,131,91,121)(82,130,92,140)(83,129,93,139)(84,128,94,138)(85,127,95,137)(86,126,96,136)(87,125,97,135)(88,124,98,134)(89,123,99,133)(90,122,100,132), (1,135,40,76)(2,136,21,77)(3,137,22,78)(4,138,23,79)(5,139,24,80)(6,140,25,61)(7,121,26,62)(8,122,27,63)(9,123,28,64)(10,124,29,65)(11,125,30,66)(12,126,31,67)(13,127,32,68)(14,128,33,69)(15,129,34,70)(16,130,35,71)(17,131,36,72)(18,132,37,73)(19,133,38,74)(20,134,39,75)(41,95,142,107)(42,96,143,108)(43,97,144,109)(44,98,145,110)(45,99,146,111)(46,100,147,112)(47,81,148,113)(48,82,149,114)(49,83,150,115)(50,84,151,116)(51,85,152,117)(52,86,153,118)(53,87,154,119)(54,88,155,120)(55,89,156,101)(56,90,157,102)(57,91,158,103)(58,92,159,104)(59,93,160,105)(60,94,141,106), (1,119)(2,110)(3,101)(4,112)(5,103)(6,114)(7,105)(8,116)(9,107)(10,118)(11,109)(12,120)(13,111)(14,102)(15,113)(16,104)(17,115)(18,106)(19,117)(20,108)(21,98)(22,89)(23,100)(24,91)(25,82)(26,93)(27,84)(28,95)(29,86)(30,97)(31,88)(32,99)(33,90)(34,81)(35,92)(36,83)(37,94)(38,85)(39,96)(40,87)(41,64)(42,75)(43,66)(44,77)(45,68)(46,79)(47,70)(48,61)(49,72)(50,63)(51,74)(52,65)(53,76)(54,67)(55,78)(56,69)(57,80)(58,71)(59,62)(60,73)(121,160)(122,151)(123,142)(124,153)(125,144)(126,155)(127,146)(128,157)(129,148)(130,159)(131,150)(132,141)(133,152)(134,143)(135,154)(136,145)(137,156)(138,147)(139,158)(140,149) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,53,11,43),(2,52,12,42),(3,51,13,41),(4,50,14,60),(5,49,15,59),(6,48,16,58),(7,47,17,57),(8,46,18,56),(9,45,19,55),(10,44,20,54),(21,153,31,143),(22,152,32,142),(23,151,33,141),(24,150,34,160),(25,149,35,159),(26,148,36,158),(27,147,37,157),(28,146,38,156),(29,145,39,155),(30,144,40,154),(61,114,71,104),(62,113,72,103),(63,112,73,102),(64,111,74,101),(65,110,75,120),(66,109,76,119),(67,108,77,118),(68,107,78,117),(69,106,79,116),(70,105,80,115),(81,131,91,121),(82,130,92,140),(83,129,93,139),(84,128,94,138),(85,127,95,137),(86,126,96,136),(87,125,97,135),(88,124,98,134),(89,123,99,133),(90,122,100,132)], [(1,135,40,76),(2,136,21,77),(3,137,22,78),(4,138,23,79),(5,139,24,80),(6,140,25,61),(7,121,26,62),(8,122,27,63),(9,123,28,64),(10,124,29,65),(11,125,30,66),(12,126,31,67),(13,127,32,68),(14,128,33,69),(15,129,34,70),(16,130,35,71),(17,131,36,72),(18,132,37,73),(19,133,38,74),(20,134,39,75),(41,95,142,107),(42,96,143,108),(43,97,144,109),(44,98,145,110),(45,99,146,111),(46,100,147,112),(47,81,148,113),(48,82,149,114),(49,83,150,115),(50,84,151,116),(51,85,152,117),(52,86,153,118),(53,87,154,119),(54,88,155,120),(55,89,156,101),(56,90,157,102),(57,91,158,103),(58,92,159,104),(59,93,160,105),(60,94,141,106)], [(1,119),(2,110),(3,101),(4,112),(5,103),(6,114),(7,105),(8,116),(9,107),(10,118),(11,109),(12,120),(13,111),(14,102),(15,113),(16,104),(17,115),(18,106),(19,117),(20,108),(21,98),(22,89),(23,100),(24,91),(25,82),(26,93),(27,84),(28,95),(29,86),(30,97),(31,88),(32,99),(33,90),(34,81),(35,92),(36,83),(37,94),(38,85),(39,96),(40,87),(41,64),(42,75),(43,66),(44,77),(45,68),(46,79),(47,70),(48,61),(49,72),(50,63),(51,74),(52,65),(53,76),(54,67),(55,78),(56,69),(57,80),(58,71),(59,62),(60,73),(121,160),(122,151),(123,142),(124,153),(125,144),(126,155),(127,146),(128,157),(129,148),(130,159),(131,150),(132,141),(133,152),(134,143),(135,154),(136,145),(137,156),(138,147),(139,158),(140,149)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | ··· | 4M | 4N | 4O | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 20 | 20 | 2 | 2 | 2 | 2 | 4 | 10 | ··· | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | D10 | 2+ 1+4 | D4×D5 | D4⋊2D5 | D4⋊6D10 |
kernel | Dic10⋊11D4 | C4×Dic10 | C4×D20 | D4×Dic5 | C20⋊2D4 | Dic5⋊D4 | C20⋊D4 | C5×C4⋊1D4 | C2×D4⋊2D5 | Dic10 | C4⋊1D4 | C20 | C42 | C2×D4 | C10 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 12 | 1 | 4 | 4 | 4 |
Matrix representation of Dic10⋊11D4 ►in GL6(𝔽41)
1 | 40 | 0 | 0 | 0 | 0 |
36 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
35 | 40 | 0 | 0 | 0 | 0 |
35 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 2 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 5 |
0 | 0 | 0 | 0 | 16 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 2 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 36 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,36,0,0,0,0,40,6,0,0,0,0,0,0,32,32,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,35,0,0,0,0,40,6,0,0,0,0,0,0,40,40,0,0,0,0,2,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,16,0,0,0,0,5,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,36,40] >;
Dic10⋊11D4 in GAP, Magma, Sage, TeX
{\rm Dic}_{10}\rtimes_{11}D_4
% in TeX
G:=Group("Dic10:11D4");
// GroupNames label
G:=SmallGroup(320,1390);
// by ID
G=gap.SmallGroup(320,1390);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,100,675,570,185,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^11,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations