Copied to
clipboard

G = Dic1024D4order 320 = 26·5

2nd semidirect product of Dic10 and D4 acting through Inn(Dic10)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1024D4, C42.111D10, C10.1042+ 1+4, (C4×D4)⋊15D5, (D4×C20)⋊17C2, C41(C4○D20), C203(C4○D4), C20⋊D49C2, C51(Q86D4), C4.142(D4×D5), D10⋊D48C2, C207D419C2, C204D412C2, C4⋊C4.317D10, C20.348(C2×D4), D208C415C2, (C4×Dic10)⋊32C2, (C2×D4).216D10, (C2×C10).97C24, Dic5.42(C2×D4), C10.52(C22×D4), (C2×C20).785C23, (C4×C20).154C22, C22⋊C4.112D10, (C22×C4).210D10, C2.16(D48D10), C23.97(C22×D5), (D4×C10).258C22, (C2×D20).144C22, C4⋊Dic5.299C22, (C4×Dic5).83C22, (C22×D5).32C23, C22.122(C23×D5), D10⋊C4.54C22, (C22×C10).167C23, (C22×C20).109C22, (C2×Dic5).215C23, (C2×Dic10).324C22, C10.D4.111C22, C2.25(C2×D4×D5), (C2×C4○D20)⋊10C2, C10.44(C2×C4○D4), C2.48(C2×C4○D20), (C2×C4×D5).251C22, (C5×C4⋊C4).328C22, (C2×C4).580(C22×D5), (C2×C5⋊D4).14C22, (C5×C22⋊C4).124C22, SmallGroup(320,1225)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1024D4
C1C5C10C2×C10C22×D5C2×D20D208C4 — Dic1024D4
C5C2×C10 — Dic1024D4
C1C22C4×D4

Generators and relations for Dic1024D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 1270 in 312 conjugacy classes, 107 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×D4, C4×D4, C4×Q8, C4⋊D4, C41D4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, Q86D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, D4×C10, C4×Dic10, C204D4, D10⋊D4, D208C4, C207D4, C20⋊D4, D4×C20, C2×C4○D20, Dic1024D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2+ 1+4, C22×D5, Q86D4, C4○D20, D4×D5, C23×D5, C2×C4○D20, C2×D4×D5, D48D10, Dic1024D4

Smallest permutation representation of Dic1024D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 26 11 36)(2 25 12 35)(3 24 13 34)(4 23 14 33)(5 22 15 32)(6 21 16 31)(7 40 17 30)(8 39 18 29)(9 38 19 28)(10 37 20 27)(41 149 51 159)(42 148 52 158)(43 147 53 157)(44 146 54 156)(45 145 55 155)(46 144 56 154)(47 143 57 153)(48 142 58 152)(49 141 59 151)(50 160 60 150)(61 102 71 112)(62 101 72 111)(63 120 73 110)(64 119 74 109)(65 118 75 108)(66 117 76 107)(67 116 77 106)(68 115 78 105)(69 114 79 104)(70 113 80 103)(81 131 91 121)(82 130 92 140)(83 129 93 139)(84 128 94 138)(85 127 95 137)(86 126 96 136)(87 125 97 135)(88 124 98 134)(89 123 99 133)(90 122 100 132)
(1 158 84 78)(2 159 85 79)(3 160 86 80)(4 141 87 61)(5 142 88 62)(6 143 89 63)(7 144 90 64)(8 145 91 65)(9 146 92 66)(10 147 93 67)(11 148 94 68)(12 149 95 69)(13 150 96 70)(14 151 97 71)(15 152 98 72)(16 153 99 73)(17 154 100 74)(18 155 81 75)(19 156 82 76)(20 157 83 77)(21 57 123 120)(22 58 124 101)(23 59 125 102)(24 60 126 103)(25 41 127 104)(26 42 128 105)(27 43 129 106)(28 44 130 107)(29 45 131 108)(30 46 132 109)(31 47 133 110)(32 48 134 111)(33 49 135 112)(34 50 136 113)(35 51 137 114)(36 52 138 115)(37 53 139 116)(38 54 140 117)(39 55 121 118)(40 56 122 119)
(1 128)(2 129)(3 130)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 138)(12 139)(13 140)(14 121)(15 122)(16 123)(17 124)(18 125)(19 126)(20 127)(21 99)(22 100)(23 81)(24 82)(25 83)(26 84)(27 85)(28 86)(29 87)(30 88)(31 89)(32 90)(33 91)(34 92)(35 93)(36 94)(37 95)(38 96)(39 97)(40 98)(41 157)(42 158)(43 159)(44 160)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 147)(52 148)(53 149)(54 150)(55 151)(56 152)(57 153)(58 154)(59 155)(60 156)(61 108)(62 109)(63 110)(64 111)(65 112)(66 113)(67 114)(68 115)(69 116)(70 117)(71 118)(72 119)(73 120)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,26,11,36)(2,25,12,35)(3,24,13,34)(4,23,14,33)(5,22,15,32)(6,21,16,31)(7,40,17,30)(8,39,18,29)(9,38,19,28)(10,37,20,27)(41,149,51,159)(42,148,52,158)(43,147,53,157)(44,146,54,156)(45,145,55,155)(46,144,56,154)(47,143,57,153)(48,142,58,152)(49,141,59,151)(50,160,60,150)(61,102,71,112)(62,101,72,111)(63,120,73,110)(64,119,74,109)(65,118,75,108)(66,117,76,107)(67,116,77,106)(68,115,78,105)(69,114,79,104)(70,113,80,103)(81,131,91,121)(82,130,92,140)(83,129,93,139)(84,128,94,138)(85,127,95,137)(86,126,96,136)(87,125,97,135)(88,124,98,134)(89,123,99,133)(90,122,100,132), (1,158,84,78)(2,159,85,79)(3,160,86,80)(4,141,87,61)(5,142,88,62)(6,143,89,63)(7,144,90,64)(8,145,91,65)(9,146,92,66)(10,147,93,67)(11,148,94,68)(12,149,95,69)(13,150,96,70)(14,151,97,71)(15,152,98,72)(16,153,99,73)(17,154,100,74)(18,155,81,75)(19,156,82,76)(20,157,83,77)(21,57,123,120)(22,58,124,101)(23,59,125,102)(24,60,126,103)(25,41,127,104)(26,42,128,105)(27,43,129,106)(28,44,130,107)(29,45,131,108)(30,46,132,109)(31,47,133,110)(32,48,134,111)(33,49,135,112)(34,50,136,113)(35,51,137,114)(36,52,138,115)(37,53,139,116)(38,54,140,117)(39,55,121,118)(40,56,122,119), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,121)(15,122)(16,123)(17,124)(18,125)(19,126)(20,127)(21,99)(22,100)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,157)(42,158)(43,159)(44,160)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,108)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,120)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,26,11,36)(2,25,12,35)(3,24,13,34)(4,23,14,33)(5,22,15,32)(6,21,16,31)(7,40,17,30)(8,39,18,29)(9,38,19,28)(10,37,20,27)(41,149,51,159)(42,148,52,158)(43,147,53,157)(44,146,54,156)(45,145,55,155)(46,144,56,154)(47,143,57,153)(48,142,58,152)(49,141,59,151)(50,160,60,150)(61,102,71,112)(62,101,72,111)(63,120,73,110)(64,119,74,109)(65,118,75,108)(66,117,76,107)(67,116,77,106)(68,115,78,105)(69,114,79,104)(70,113,80,103)(81,131,91,121)(82,130,92,140)(83,129,93,139)(84,128,94,138)(85,127,95,137)(86,126,96,136)(87,125,97,135)(88,124,98,134)(89,123,99,133)(90,122,100,132), (1,158,84,78)(2,159,85,79)(3,160,86,80)(4,141,87,61)(5,142,88,62)(6,143,89,63)(7,144,90,64)(8,145,91,65)(9,146,92,66)(10,147,93,67)(11,148,94,68)(12,149,95,69)(13,150,96,70)(14,151,97,71)(15,152,98,72)(16,153,99,73)(17,154,100,74)(18,155,81,75)(19,156,82,76)(20,157,83,77)(21,57,123,120)(22,58,124,101)(23,59,125,102)(24,60,126,103)(25,41,127,104)(26,42,128,105)(27,43,129,106)(28,44,130,107)(29,45,131,108)(30,46,132,109)(31,47,133,110)(32,48,134,111)(33,49,135,112)(34,50,136,113)(35,51,137,114)(36,52,138,115)(37,53,139,116)(38,54,140,117)(39,55,121,118)(40,56,122,119), (1,128)(2,129)(3,130)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,138)(12,139)(13,140)(14,121)(15,122)(16,123)(17,124)(18,125)(19,126)(20,127)(21,99)(22,100)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,157)(42,158)(43,159)(44,160)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(57,153)(58,154)(59,155)(60,156)(61,108)(62,109)(63,110)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(71,118)(72,119)(73,120)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,26,11,36),(2,25,12,35),(3,24,13,34),(4,23,14,33),(5,22,15,32),(6,21,16,31),(7,40,17,30),(8,39,18,29),(9,38,19,28),(10,37,20,27),(41,149,51,159),(42,148,52,158),(43,147,53,157),(44,146,54,156),(45,145,55,155),(46,144,56,154),(47,143,57,153),(48,142,58,152),(49,141,59,151),(50,160,60,150),(61,102,71,112),(62,101,72,111),(63,120,73,110),(64,119,74,109),(65,118,75,108),(66,117,76,107),(67,116,77,106),(68,115,78,105),(69,114,79,104),(70,113,80,103),(81,131,91,121),(82,130,92,140),(83,129,93,139),(84,128,94,138),(85,127,95,137),(86,126,96,136),(87,125,97,135),(88,124,98,134),(89,123,99,133),(90,122,100,132)], [(1,158,84,78),(2,159,85,79),(3,160,86,80),(4,141,87,61),(5,142,88,62),(6,143,89,63),(7,144,90,64),(8,145,91,65),(9,146,92,66),(10,147,93,67),(11,148,94,68),(12,149,95,69),(13,150,96,70),(14,151,97,71),(15,152,98,72),(16,153,99,73),(17,154,100,74),(18,155,81,75),(19,156,82,76),(20,157,83,77),(21,57,123,120),(22,58,124,101),(23,59,125,102),(24,60,126,103),(25,41,127,104),(26,42,128,105),(27,43,129,106),(28,44,130,107),(29,45,131,108),(30,46,132,109),(31,47,133,110),(32,48,134,111),(33,49,135,112),(34,50,136,113),(35,51,137,114),(36,52,138,115),(37,53,139,116),(38,54,140,117),(39,55,121,118),(40,56,122,119)], [(1,128),(2,129),(3,130),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,138),(12,139),(13,140),(14,121),(15,122),(16,123),(17,124),(18,125),(19,126),(20,127),(21,99),(22,100),(23,81),(24,82),(25,83),(26,84),(27,85),(28,86),(29,87),(30,88),(31,89),(32,90),(33,91),(34,92),(35,93),(36,94),(37,95),(38,96),(39,97),(40,98),(41,157),(42,158),(43,159),(44,160),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,147),(52,148),(53,149),(54,150),(55,151),(56,152),(57,153),(58,154),(59,155),(60,156),(61,108),(62,109),(63,110),(64,111),(65,112),(66,113),(67,114),(68,115),(69,116),(70,117),(71,118),(72,119),(73,120),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J4K4L4M4N4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224···444444445510···1010···1020···2020···20
size111144202020202···24101010102020222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10C4○D202+ 1+4D4×D5D48D10
kernelDic1024D4C4×Dic10C204D4D10⋊D4D208C4C207D4C20⋊D4D4×C20C2×C4○D20Dic10C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C4C2
# reps1114222124242424216144

Matrix representation of Dic1024D4 in GL6(𝔽41)

010000
4060000
0072000
00183400
0000400
0000040
,
4000000
3510000
00221600
0031900
0000400
0000040
,
100000
010000
001000
000100
0000736
00001034
,
4000000
0400000
00192500
0022200
000010
00001140

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,6,0,0,0,0,0,0,7,18,0,0,0,0,20,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,22,3,0,0,0,0,16,19,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,10,0,0,0,0,36,34],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,19,2,0,0,0,0,25,22,0,0,0,0,0,0,1,11,0,0,0,0,0,40] >;

Dic1024D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_{24}D_4
% in TeX

G:=Group("Dic10:24D4");
// GroupNames label

G:=SmallGroup(320,1225);
// by ID

G=gap.SmallGroup(320,1225);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽