extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18)⋊1C6 = C2×C32⋊D9 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 54 | | (C3xC18):1C6 | 324,63 |
(C3×C18)⋊2C6 = C2×He3.S3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):2C6 | 324,71 |
(C3×C18)⋊3C6 = C2×He3.2S3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):3C6 | 324,73 |
(C3×C18)⋊4C6 = C6×C9⋊C6 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18):4C6 | 324,140 |
(C3×C18)⋊5C6 = C2×C33.S3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 54 | | (C3xC18):5C6 | 324,146 |
(C3×C18)⋊6C6 = C2×He3.4S3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 54 | 6+ | (C3xC18):6C6 | 324,147 |
(C3×C18)⋊7C6 = C2×S3×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18):7C6 | 324,141 |
(C3×C18)⋊8C6 = C22×C32⋊C9 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18):8C6 | 324,82 |
(C3×C18)⋊9C6 = C22×He3.C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18):9C6 | 324,87 |
(C3×C18)⋊10C6 = C22×He3⋊C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18):10C6 | 324,88 |
(C3×C18)⋊11C6 = C2×C6×3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18):11C6 | 324,153 |
(C3×C18)⋊12C6 = C22×C9○He3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18):12C6 | 324,154 |
(C3×C18)⋊13C6 = S3×C3×C18 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18):13C6 | 324,137 |
(C3×C18)⋊14C6 = D9×C3×C6 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18):14C6 | 324,136 |
(C3×C18)⋊15C6 = C6×C9⋊S3 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18):15C6 | 324,142 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C18).1C6 = C32⋊Dic9 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 108 | | (C3xC18).1C6 | 324,8 |
(C3×C18).2C6 = He3.Dic3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).2C6 | 324,16 |
(C3×C18).3C6 = He3.2Dic3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).3C6 | 324,18 |
(C3×C18).4C6 = C9⋊C36 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).4C6 | 324,9 |
(C3×C18).5C6 = C2×C9⋊C18 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).5C6 | 324,64 |
(C3×C18).6C6 = C3×C9⋊C12 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).6C6 | 324,94 |
(C3×C18).7C6 = C33.Dic3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 108 | | (C3xC18).7C6 | 324,100 |
(C3×C18).8C6 = He3.4Dic3 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 108 | 6- | (C3xC18).8C6 | 324,101 |
(C3×C18).9C6 = Dic3×3- 1+2 | φ: C6/C1 → C6 ⊆ Aut C3×C18 | 36 | 6 | (C3xC18).9C6 | 324,95 |
(C3×C18).10C6 = C4×C32⋊C9 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18).10C6 | 324,27 |
(C3×C18).11C6 = C4×C9⋊C9 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 324 | | (C3xC18).11C6 | 324,28 |
(C3×C18).12C6 = C4×He3.C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).12C6 | 324,32 |
(C3×C18).13C6 = C4×He3⋊C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).13C6 | 324,33 |
(C3×C18).14C6 = C4×C3.He3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).14C6 | 324,34 |
(C3×C18).15C6 = C22×C9⋊C9 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 324 | | (C3xC18).15C6 | 324,83 |
(C3×C18).16C6 = C22×C3.He3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18).16C6 | 324,89 |
(C3×C18).17C6 = C4×C27⋊C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).17C6 | 324,30 |
(C3×C18).18C6 = C22×C27⋊C3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18).18C6 | 324,85 |
(C3×C18).19C6 = C12×3- 1+2 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | | (C3xC18).19C6 | 324,107 |
(C3×C18).20C6 = C4×C9○He3 | φ: C6/C2 → C3 ⊆ Aut C3×C18 | 108 | 3 | (C3xC18).20C6 | 324,108 |
(C3×C18).21C6 = Dic3×C27 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | 2 | (C3xC18).21C6 | 324,11 |
(C3×C18).22C6 = S3×C54 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | 2 | (C3xC18).22C6 | 324,66 |
(C3×C18).23C6 = Dic3×C3×C9 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).23C6 | 324,91 |
(C3×C18).24C6 = C9×Dic9 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).24C6 | 324,6 |
(C3×C18).25C6 = D9×C18 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 36 | 2 | (C3xC18).25C6 | 324,61 |
(C3×C18).26C6 = C32×Dic9 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).26C6 | 324,90 |
(C3×C18).27C6 = C3×C9⋊Dic3 | φ: C6/C3 → C2 ⊆ Aut C3×C18 | 108 | | (C3xC18).27C6 | 324,96 |