Extensions 1→N→G→Q→1 with N=C56 and Q=C6

Direct product G=N×Q with N=C56 and Q=C6
dρLabelID
C2×C168336C2xC168336,109

Semidirect products G=N:Q with N=C56 and Q=C6
extensionφ:Q→Aut NdρLabelID
C561C6 = D56⋊C3φ: C6/C1C6 ⊆ Aut C56566+C56:1C6336,10
C562C6 = C56⋊C6φ: C6/C1C6 ⊆ Aut C56566C56:2C6336,9
C563C6 = C8×F7φ: C6/C1C6 ⊆ Aut C56566C56:3C6336,7
C564C6 = C8⋊F7φ: C6/C1C6 ⊆ Aut C56566C56:4C6336,8
C565C6 = D8×C7⋊C3φ: C6/C1C6 ⊆ Aut C56566C56:5C6336,53
C566C6 = SD16×C7⋊C3φ: C6/C1C6 ⊆ Aut C56566C56:6C6336,54
C567C6 = M4(2)×C7⋊C3φ: C6/C1C6 ⊆ Aut C56566C56:7C6336,52
C568C6 = C2×C8×C7⋊C3φ: C6/C2C3 ⊆ Aut C56112C56:8C6336,51
C569C6 = C3×D56φ: C6/C3C2 ⊆ Aut C561682C56:9C6336,61
C5610C6 = C3×C56⋊C2φ: C6/C3C2 ⊆ Aut C561682C56:10C6336,60
C5611C6 = D7×C24φ: C6/C3C2 ⊆ Aut C561682C56:11C6336,58
C5612C6 = C3×C8⋊D7φ: C6/C3C2 ⊆ Aut C561682C56:12C6336,59
C5613C6 = D8×C21φ: C6/C3C2 ⊆ Aut C561682C56:13C6336,111
C5614C6 = SD16×C21φ: C6/C3C2 ⊆ Aut C561682C56:14C6336,112
C5615C6 = M4(2)×C21φ: C6/C3C2 ⊆ Aut C561682C56:15C6336,110

Non-split extensions G=N.Q with N=C56 and Q=C6
extensionφ:Q→Aut NdρLabelID
C56.1C6 = C8.F7φ: C6/C1C6 ⊆ Aut C561126-C56.1C6336,11
C56.2C6 = C7⋊C48φ: C6/C1C6 ⊆ Aut C561126C56.2C6336,1
C56.3C6 = Q16×C7⋊C3φ: C6/C1C6 ⊆ Aut C561126C56.3C6336,55
C56.4C6 = C16×C7⋊C3φ: C6/C2C3 ⊆ Aut C561123C56.4C6336,2
C56.5C6 = C3×Dic28φ: C6/C3C2 ⊆ Aut C563362C56.5C6336,62
C56.6C6 = C3×C7⋊C16φ: C6/C3C2 ⊆ Aut C563362C56.6C6336,4
C56.7C6 = Q16×C21φ: C6/C3C2 ⊆ Aut C563362C56.7C6336,113

׿
×
𝔽