Copied to
clipboard

G = D9×C7⋊C3order 378 = 2·33·7

Direct product of D9 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D9×C7⋊C3, C638C6, C72(C3×D9), (C7×D9)⋊4C3, C21.8(C3×S3), (C9×C7⋊C3)⋊2C2, C95(C2×C7⋊C3), C3.3(S3×C7⋊C3), (C3×C7⋊C3).6S3, SmallGroup(378,15)

Series: Derived Chief Lower central Upper central

C1C63 — D9×C7⋊C3
C1C3C21C63C9×C7⋊C3 — D9×C7⋊C3
C63 — D9×C7⋊C3
C1

Generators and relations for D9×C7⋊C3
 G = < a,b,c,d | a9=b2=c7=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

9C2
7C3
14C3
3S3
63C6
7C32
14C9
9C14
2C7⋊C3
21C3×S3
7C3×C9
3S3×C7
9C2×C7⋊C3
2C7⋊C9
7C3×D9
3S3×C7⋊C3

Character table of D9×C7⋊C3

 class 123A3B3C3D3E6A6B7A7B9A9B9C9D9E9F9G9H9I14A14B21A21B63A63B63C63D63E63F
 size 192771414636333222141414141414272766666666
ρ1111111111111111111111111111111    trivial
ρ21-111111-1-111111111111-1-111111111    linear of order 2
ρ31-11ζ32ζ3ζ3ζ32ζ65ζ611111ζ32ζ3ζ3ζ32ζ32ζ3-1-111111111    linear of order 6
ρ4111ζ3ζ32ζ32ζ3ζ32ζ311111ζ3ζ32ζ32ζ3ζ3ζ321111111111    linear of order 3
ρ5111ζ32ζ3ζ3ζ32ζ3ζ3211111ζ32ζ3ζ3ζ32ζ32ζ31111111111    linear of order 3
ρ61-11ζ3ζ32ζ32ζ3ζ6ζ6511111ζ3ζ32ζ32ζ3ζ3ζ32-1-111111111    linear of order 6
ρ720222220022-1-1-1-1-1-1-1-1-10022-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-122-1-10022ζ989ζ9594ζ9792ζ9594ζ989ζ9792ζ9792ζ989ζ959400-1-1ζ989ζ989ζ9792ζ9594ζ9792ζ9594    orthogonal lifted from D9
ρ920-122-1-10022ζ9594ζ9792ζ989ζ9792ζ9594ζ989ζ989ζ9594ζ979200-1-1ζ9594ζ9594ζ989ζ9792ζ989ζ9792    orthogonal lifted from D9
ρ1020-122-1-10022ζ9792ζ989ζ9594ζ989ζ9792ζ9594ζ9594ζ9792ζ98900-1-1ζ9792ζ9792ζ9594ζ989ζ9594ζ989    orthogonal lifted from D9
ρ11202-1+-3-1--3-1--3-1+-30022-1-1-1ζ65ζ6ζ6ζ65ζ65ζ60022-1-1-1-1-1-1    complex lifted from C3×S3
ρ1220-1-1+-3-1--3ζ6ζ650022ζ9792ζ989ζ9594ζ9492ζ9894ζ929ζ9897ζ959ζ979500-1-1ζ9792ζ9792ζ9594ζ989ζ9594ζ989    complex lifted from C3×D9
ρ13202-1--3-1+-3-1+-3-1--30022-1-1-1ζ6ζ65ζ65ζ6ζ6ζ650022-1-1-1-1-1-1    complex lifted from C3×S3
ρ1420-1-1--3-1+-3ζ65ζ60022ζ9594ζ9792ζ989ζ9894ζ9897ζ9492ζ9795ζ929ζ95900-1-1ζ9594ζ9594ζ989ζ9792ζ989ζ9792    complex lifted from C3×D9
ρ1520-1-1--3-1+-3ζ65ζ60022ζ989ζ9594ζ9792ζ929ζ9492ζ959ζ9894ζ9795ζ989700-1-1ζ989ζ989ζ9792ζ9594ζ9792ζ9594    complex lifted from C3×D9
ρ1620-1-1+-3-1--3ζ6ζ650022ζ9594ζ9792ζ989ζ959ζ929ζ9795ζ9492ζ9897ζ989400-1-1ζ9594ζ9594ζ989ζ9792ζ989ζ9792    complex lifted from C3×D9
ρ1720-1-1--3-1+-3ζ65ζ60022ζ9792ζ989ζ9594ζ9795ζ959ζ9897ζ929ζ9894ζ949200-1-1ζ9792ζ9792ζ9594ζ989ζ9594ζ989    complex lifted from C3×D9
ρ1820-1-1+-3-1--3ζ6ζ650022ζ989ζ9594ζ9792ζ9897ζ9795ζ9894ζ959ζ9492ζ92900-1-1ζ989ζ989ζ9792ζ9594ζ9792ζ9594    complex lifted from C3×D9
ρ193-33000000-1+-7/2-1--7/23330000001+-7/21--7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C2×C7⋊C3
ρ20333000000-1+-7/2-1--7/2333000000-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ21333000000-1--7/2-1+-7/2333000000-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ223-33000000-1--7/2-1+-7/23330000001--7/21+-7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C2×C7⋊C3
ρ23606000000-1+-7-1--7-3-3-300000000-1+-7-1--71--7/21+-7/21+-7/21--7/21--7/21+-7/2    complex lifted from S3×C7⋊C3
ρ24606000000-1--7-1+-7-3-3-300000000-1--7-1+-71+-7/21--7/21--7/21+-7/21+-7/21--7/2    complex lifted from S3×C7⋊C3
ρ2560-3000000-1+-7-1--797+3ζ9298+3ζ995+3ζ94000000001--7/21+-7/2ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73    complex faithful
ρ2660-3000000-1+-7-1--795+3ζ9497+3ζ9298+3ζ9000000001--7/21+-7/2ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73    complex faithful
ρ2760-3000000-1+-7-1--798+3ζ995+3ζ9497+3ζ92000000001--7/21+-7/2ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73    complex faithful
ρ2860-3000000-1--7-1+-795+3ζ9497+3ζ9298+3ζ9000000001+-7/21--7/2ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7    complex faithful
ρ2960-3000000-1--7-1+-798+3ζ995+3ζ9497+3ζ92000000001+-7/21--7/2ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7    complex faithful
ρ3060-3000000-1--7-1+-797+3ζ9298+3ζ995+3ζ94000000001+-7/21--7/2ζ97ζ7697ζ7597ζ7392ζ7692ζ7592ζ73ζ97ζ7497ζ7297ζ792ζ7492ζ7292ζ7ζ95ζ7495ζ7295ζ794ζ7494ζ7294ζ7ζ98ζ7698ζ7598ζ739ζ769ζ759ζ73ζ95ζ7695ζ7595ζ7394ζ7694ζ7594ζ73ζ98ζ7498ζ7298ζ79ζ749ζ729ζ7    complex faithful

Smallest permutation representation of D9×C7⋊C3
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 25)(20 24)(21 23)(26 27)(28 36)(29 35)(30 34)(31 33)(37 42)(38 41)(39 40)(43 45)(46 54)(47 53)(48 52)(49 51)(55 56)(57 63)(58 62)(59 61)
(1 28 46 27 56 14 40)(2 29 47 19 57 15 41)(3 30 48 20 58 16 42)(4 31 49 21 59 17 43)(5 32 50 22 60 18 44)(6 33 51 23 61 10 45)(7 34 52 24 62 11 37)(8 35 53 25 63 12 38)(9 36 54 26 55 13 39)
(10 23 45)(11 24 37)(12 25 38)(13 26 39)(14 27 40)(15 19 41)(16 20 42)(17 21 43)(18 22 44)(28 46 56)(29 47 57)(30 48 58)(31 49 59)(32 50 60)(33 51 61)(34 52 62)(35 53 63)(36 54 55)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,25)(20,24)(21,23)(26,27)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,54)(47,53)(48,52)(49,51)(55,56)(57,63)(58,62)(59,61), (1,28,46,27,56,14,40)(2,29,47,19,57,15,41)(3,30,48,20,58,16,42)(4,31,49,21,59,17,43)(5,32,50,22,60,18,44)(6,33,51,23,61,10,45)(7,34,52,24,62,11,37)(8,35,53,25,63,12,38)(9,36,54,26,55,13,39), (10,23,45)(11,24,37)(12,25,38)(13,26,39)(14,27,40)(15,19,41)(16,20,42)(17,21,43)(18,22,44)(28,46,56)(29,47,57)(30,48,58)(31,49,59)(32,50,60)(33,51,61)(34,52,62)(35,53,63)(36,54,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,25)(20,24)(21,23)(26,27)(28,36)(29,35)(30,34)(31,33)(37,42)(38,41)(39,40)(43,45)(46,54)(47,53)(48,52)(49,51)(55,56)(57,63)(58,62)(59,61), (1,28,46,27,56,14,40)(2,29,47,19,57,15,41)(3,30,48,20,58,16,42)(4,31,49,21,59,17,43)(5,32,50,22,60,18,44)(6,33,51,23,61,10,45)(7,34,52,24,62,11,37)(8,35,53,25,63,12,38)(9,36,54,26,55,13,39), (10,23,45)(11,24,37)(12,25,38)(13,26,39)(14,27,40)(15,19,41)(16,20,42)(17,21,43)(18,22,44)(28,46,56)(29,47,57)(30,48,58)(31,49,59)(32,50,60)(33,51,61)(34,52,62)(35,53,63)(36,54,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,25),(20,24),(21,23),(26,27),(28,36),(29,35),(30,34),(31,33),(37,42),(38,41),(39,40),(43,45),(46,54),(47,53),(48,52),(49,51),(55,56),(57,63),(58,62),(59,61)], [(1,28,46,27,56,14,40),(2,29,47,19,57,15,41),(3,30,48,20,58,16,42),(4,31,49,21,59,17,43),(5,32,50,22,60,18,44),(6,33,51,23,61,10,45),(7,34,52,24,62,11,37),(8,35,53,25,63,12,38),(9,36,54,26,55,13,39)], [(10,23,45),(11,24,37),(12,25,38),(13,26,39),(14,27,40),(15,19,41),(16,20,42),(17,21,43),(18,22,44),(28,46,56),(29,47,57),(30,48,58),(31,49,59),(32,50,60),(33,51,61),(34,52,62),(35,53,63),(36,54,55)]])

Matrix representation of D9×C7⋊C3 in GL5(𝔽127)

969000
118105000
00100
00010
00001
,
10531000
922000
00100
00010
00001
,
10000
01000
001261041
0001041
001261051
,
1070000
0107000
00105123
00100
001122

G:=sub<GL(5,GF(127))| [96,118,0,0,0,9,105,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[105,9,0,0,0,31,22,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,126,0,126,0,0,104,104,105,0,0,1,1,1],[107,0,0,0,0,0,107,0,0,0,0,0,105,1,1,0,0,1,0,1,0,0,23,0,22] >;

D9×C7⋊C3 in GAP, Magma, Sage, TeX

D_9\times C_7\rtimes C_3
% in TeX

G:=Group("D9xC7:C3");
// GroupNames label

G:=SmallGroup(378,15);
// by ID

G=gap.SmallGroup(378,15);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,2072,642,368,6304]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^7=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of D9×C7⋊C3 in TeX
Character table of D9×C7⋊C3 in TeX

׿
×
𝔽