Copied to
clipboard

G = S3×C7⋊C9order 378 = 2·33·7

Direct product of S3 and C7⋊C9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C7⋊C9, C213C18, (S3×C7)⋊C9, C72(S3×C9), (S3×C21).C3, (C3×C21).5C6, C21.10(C3×S3), C3⋊(C2×C7⋊C9), (C3×C7⋊C9)⋊3C2, C3.5(S3×C7⋊C3), (C3×S3).(C7⋊C3), C32.2(C2×C7⋊C3), SmallGroup(378,16)

Series: Derived Chief Lower central Upper central

C1C21 — S3×C7⋊C9
C1C7C21C3×C21C3×C7⋊C9 — S3×C7⋊C9
C21 — S3×C7⋊C9
C1C3

Generators and relations for S3×C7⋊C9
 G = < a,b,c,d | a3=b2=c7=d9=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

3C2
2C3
3C6
7C9
14C9
3C14
2C21
21C18
7C3×C9
3C42
2C7⋊C9
7S3×C9
3C2×C7⋊C9

Smallest permutation representation of S3×C7⋊C9
On 126 points
Generators in S126
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 124 121)(119 125 122)(120 126 123)
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 37)(10 88)(11 89)(12 90)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 74)(20 75)(21 76)(22 77)(23 78)(24 79)(25 80)(26 81)(27 73)(28 71)(29 72)(30 64)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 100)(55 117)(56 109)(57 110)(58 111)(59 112)(60 113)(61 114)(62 115)(63 116)(91 126)(92 118)(93 119)(94 120)(95 121)(96 122)(97 123)(98 124)(99 125)
(1 97 86 80 69 111 101)(2 70 98 112 87 102 81)(3 88 71 103 99 73 113)(4 91 89 74 72 114 104)(5 64 92 115 90 105 75)(6 82 65 106 93 76 116)(7 94 83 77 66 117 107)(8 67 95 109 84 108 78)(9 85 68 100 96 79 110)(10 28 48 125 27 60 40)(11 19 29 61 49 41 126)(12 50 20 42 30 118 62)(13 31 51 119 21 63 43)(14 22 32 55 52 44 120)(15 53 23 45 33 121 56)(16 34 54 122 24 57 37)(17 25 35 58 46 38 123)(18 47 26 39 36 124 59)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)

G:=sub<Sym(126)| (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,124,121)(119,125,122)(120,126,123), (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,37)(10,88)(11,89)(12,90)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,73)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,100)(55,117)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(91,126)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125), (1,97,86,80,69,111,101)(2,70,98,112,87,102,81)(3,88,71,103,99,73,113)(4,91,89,74,72,114,104)(5,64,92,115,90,105,75)(6,82,65,106,93,76,116)(7,94,83,77,66,117,107)(8,67,95,109,84,108,78)(9,85,68,100,96,79,110)(10,28,48,125,27,60,40)(11,19,29,61,49,41,126)(12,50,20,42,30,118,62)(13,31,51,119,21,63,43)(14,22,32,55,52,44,120)(15,53,23,45,33,121,56)(16,34,54,122,24,57,37)(17,25,35,58,46,38,123)(18,47,26,39,36,124,59), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)>;

G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,124,121)(119,125,122)(120,126,123), (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,37)(10,88)(11,89)(12,90)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,80)(26,81)(27,73)(28,71)(29,72)(30,64)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,100)(55,117)(56,109)(57,110)(58,111)(59,112)(60,113)(61,114)(62,115)(63,116)(91,126)(92,118)(93,119)(94,120)(95,121)(96,122)(97,123)(98,124)(99,125), (1,97,86,80,69,111,101)(2,70,98,112,87,102,81)(3,88,71,103,99,73,113)(4,91,89,74,72,114,104)(5,64,92,115,90,105,75)(6,82,65,106,93,76,116)(7,94,83,77,66,117,107)(8,67,95,109,84,108,78)(9,85,68,100,96,79,110)(10,28,48,125,27,60,40)(11,19,29,61,49,41,126)(12,50,20,42,30,118,62)(13,31,51,119,21,63,43)(14,22,32,55,52,44,120)(15,53,23,45,33,121,56)(16,34,54,122,24,57,37)(17,25,35,58,46,38,123)(18,47,26,39,36,124,59), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126) );

G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,124,121),(119,125,122),(120,126,123)], [(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,37),(10,88),(11,89),(12,90),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,74),(20,75),(21,76),(22,77),(23,78),(24,79),(25,80),(26,81),(27,73),(28,71),(29,72),(30,64),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,100),(55,117),(56,109),(57,110),(58,111),(59,112),(60,113),(61,114),(62,115),(63,116),(91,126),(92,118),(93,119),(94,120),(95,121),(96,122),(97,123),(98,124),(99,125)], [(1,97,86,80,69,111,101),(2,70,98,112,87,102,81),(3,88,71,103,99,73,113),(4,91,89,74,72,114,104),(5,64,92,115,90,105,75),(6,82,65,106,93,76,116),(7,94,83,77,66,117,107),(8,67,95,109,84,108,78),(9,85,68,100,96,79,110),(10,28,48,125,27,60,40),(11,19,29,61,49,41,126),(12,50,20,42,30,118,62),(13,31,51,119,21,63,43),(14,22,32,55,52,44,120),(15,53,23,45,33,121,56),(16,34,54,122,24,57,37),(17,25,35,58,46,38,123),(18,47,26,39,36,124,59)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126)]])

45 conjugacy classes

class 1  2 3A3B3C3D3E6A6B7A7B9A···9F9G···9L14A14B18A···18F21A21B21C21D21E···21J42A42B42C42D
order123333366779···99···9141418···182121212121···2142424242
size131122233337···714···149921···2133336···69999

45 irreducible representations

dim111111222333366
type+++
imageC1C2C3C6C9C18S3C3×S3S3×C9C7⋊C3C2×C7⋊C3C7⋊C9C2×C7⋊C9S3×C7⋊C3S3×C7⋊C9
kernelS3×C7⋊C9C3×C7⋊C9S3×C21C3×C21S3×C7C21C7⋊C9C21C7C3×S3C32S3C3C3C1
# reps112266126224424

Matrix representation of S3×C7⋊C9 in GL5(𝔽127)

1070000
3319000
00100
00010
00001
,
12645000
01000
00100
00010
00001
,
10000
01000
00111
00105104104
001260126
,
370000
037000
0060929
002810767
00283987

G:=sub<GL(5,GF(127))| [107,33,0,0,0,0,19,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[126,0,0,0,0,45,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,105,126,0,0,1,104,0,0,0,1,104,126],[37,0,0,0,0,0,37,0,0,0,0,0,60,28,28,0,0,9,107,39,0,0,29,67,87] >;

S3×C7⋊C9 in GAP, Magma, Sage, TeX

S_3\times C_7\rtimes C_9
% in TeX

G:=Group("S3xC7:C9");
// GroupNames label

G:=SmallGroup(378,16);
// by ID

G=gap.SmallGroup(378,16);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,36,723,1359]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^7=d^9=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of S3×C7⋊C9 in TeX

׿
×
𝔽