extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C6)⋊1D6 = (S3×C6)⋊D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6):1D6 | 432,601 |
(S3×C6)⋊2D6 = C3⋊S3⋊4D12 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6):2D6 | 432,602 |
(S3×C6)⋊3D6 = C3⋊S3×D12 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6):3D6 | 432,672 |
(S3×C6)⋊4D6 = C12⋊S32 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6):4D6 | 432,673 |
(S3×C6)⋊5D6 = C3⋊S3×C3⋊D4 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6):5D6 | 432,685 |
(S3×C6)⋊6D6 = C62⋊23D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 36 | | (S3xC6):6D6 | 432,686 |
(S3×C6)⋊7D6 = S3×D6⋊S3 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6):7D6 | 432,597 |
(S3×C6)⋊8D6 = S3×C3⋊D12 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6):8D6 | 432,598 |
(S3×C6)⋊9D6 = D6⋊4S32 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6):9D6 | 432,599 |
(S3×C6)⋊10D6 = D6⋊S32 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6):10D6 | 432,600 |
(S3×C6)⋊11D6 = C3×S3×D12 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6):11D6 | 432,649 |
(S3×C6)⋊12D6 = C3×D6⋊D6 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6):12D6 | 432,650 |
(S3×C6)⋊13D6 = C3×Dic3⋊D6 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 4 | (S3xC6):13D6 | 432,659 |
(S3×C6)⋊14D6 = C2×S33 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6):14D6 | 432,759 |
(S3×C6)⋊15D6 = C6×D6⋊S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):15D6 | 432,655 |
(S3×C6)⋊16D6 = C6×C3⋊D12 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 48 | | (S3xC6):16D6 | 432,656 |
(S3×C6)⋊17D6 = C3×S3×C3⋊D4 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 24 | 4 | (S3xC6):17D6 | 432,658 |
(S3×C6)⋊18D6 = C2×C33⋊6D4 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6):18D6 | 432,680 |
(S3×C6)⋊19D6 = C2×C33⋊7D4 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6):19D6 | 432,681 |
(S3×C6)⋊20D6 = S3×C32⋊7D4 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6):20D6 | 432,684 |
(S3×C6)⋊21D6 = C22×S3×C3⋊S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6):21D6 | 432,768 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(S3×C6).1D6 = D12⋊5D9 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 144 | 4- | (S3xC6).1D6 | 432,285 |
(S3×C6).2D6 = D12⋊D9 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).2D6 | 432,286 |
(S3×C6).3D6 = D9×D12 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4+ | (S3xC6).3D6 | 432,292 |
(S3×C6).4D6 = C36⋊D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).4D6 | 432,293 |
(S3×C6).5D6 = Dic3.D18 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).5D6 | 432,309 |
(S3×C6).6D6 = D18.4D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4- | (S3xC6).6D6 | 432,310 |
(S3×C6).7D6 = D9×C3⋊D4 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).7D6 | 432,314 |
(S3×C6).8D6 = D18⋊D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 36 | 4+ | (S3xC6).8D6 | 432,315 |
(S3×C6).9D6 = (S3×C6).D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6).9D6 | 432,606 |
(S3×C6).10D6 = D6.4S32 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).10D6 | 432,608 |
(S3×C6).11D6 = D6⋊S3⋊S3 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).11D6 | 432,610 |
(S3×C6).12D6 = D6.6S32 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).12D6 | 432,611 |
(S3×C6).13D6 = (C3×D12)⋊S3 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 144 | | (S3xC6).13D6 | 432,661 |
(S3×C6).14D6 = D12⋊(C3⋊S3) | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6).14D6 | 432,662 |
(S3×C6).15D6 = C62.90D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6).15D6 | 432,675 |
(S3×C6).16D6 = C62.91D6 | φ: D6/C3 → C22 ⊆ Out S3×C6 | 72 | | (S3xC6).16D6 | 432,676 |
(S3×C6).17D6 = S32×Dic3 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).17D6 | 432,594 |
(S3×C6).18D6 = S3×C6.D6 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6).18D6 | 432,595 |
(S3×C6).19D6 = S3×C32⋊2Q8 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).19D6 | 432,603 |
(S3×C6).20D6 = D6.S32 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 8- | (S3xC6).20D6 | 432,607 |
(S3×C6).21D6 = D6.3S32 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 8+ | (S3xC6).21D6 | 432,609 |
(S3×C6).22D6 = C3×D12⋊S3 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).22D6 | 432,644 |
(S3×C6).23D6 = C3×D6.3D6 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 4 | (S3xC6).23D6 | 432,652 |
(S3×C6).24D6 = C3×D6.4D6 | φ: D6/S3 → C2 ⊆ Out S3×C6 | 24 | 4 | (S3xC6).24D6 | 432,653 |
(S3×C6).25D6 = S3×Dic18 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | 4- | (S3xC6).25D6 | 432,284 |
(S3×C6).26D6 = D6.D18 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).26D6 | 432,287 |
(S3×C6).27D6 = D36⋊5S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | 4- | (S3xC6).27D6 | 432,288 |
(S3×C6).28D6 = Dic9.D6 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | 4+ | (S3xC6).28D6 | 432,289 |
(S3×C6).29D6 = C4×S3×D9 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).29D6 | 432,290 |
(S3×C6).30D6 = S3×D36 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | 4+ | (S3xC6).30D6 | 432,291 |
(S3×C6).31D6 = C2×S3×Dic9 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6).31D6 | 432,308 |
(S3×C6).32D6 = C2×D6⋊D9 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6).32D6 | 432,311 |
(S3×C6).33D6 = C2×C9⋊D12 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).33D6 | 432,312 |
(S3×C6).34D6 = S3×C9⋊D4 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | 4 | (S3xC6).34D6 | 432,313 |
(S3×C6).35D6 = C22×S3×D9 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).35D6 | 432,544 |
(S3×C6).36D6 = C3×D12⋊5S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).36D6 | 432,643 |
(S3×C6).37D6 = C3×D6.D6 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).37D6 | 432,646 |
(S3×C6).38D6 = C3×D6.6D6 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 48 | 4 | (S3xC6).38D6 | 432,647 |
(S3×C6).39D6 = S3×C32⋊4Q8 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6).39D6 | 432,660 |
(S3×C6).40D6 = C12.73S32 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).40D6 | 432,667 |
(S3×C6).41D6 = C12.57S32 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6).41D6 | 432,668 |
(S3×C6).42D6 = C12.58S32 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).42D6 | 432,669 |
(S3×C6).43D6 = C4×S3×C3⋊S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).43D6 | 432,670 |
(S3×C6).44D6 = S3×C12⋊S3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 72 | | (S3xC6).44D6 | 432,671 |
(S3×C6).45D6 = C2×S3×C3⋊Dic3 | φ: D6/C6 → C2 ⊆ Out S3×C6 | 144 | | (S3xC6).45D6 | 432,674 |
(S3×C6).46D6 = C3×S3×Dic6 | φ: trivial image | 48 | 4 | (S3xC6).46D6 | 432,642 |
(S3×C6).47D6 = S32×C12 | φ: trivial image | 48 | 4 | (S3xC6).47D6 | 432,648 |
(S3×C6).48D6 = S3×C6×Dic3 | φ: trivial image | 48 | | (S3xC6).48D6 | 432,651 |