Extensions 1→N→G→Q→1 with N=S3×C6 and Q=D6

Direct product G=N×Q with N=S3×C6 and Q=D6
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=S3×C6 and Q=D6
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1D6 = (S3×C6)⋊D6φ: D6/C3C22 ⊆ Out S3×C6248+(S3xC6):1D6432,601
(S3×C6)⋊2D6 = C3⋊S34D12φ: D6/C3C22 ⊆ Out S3×C6248+(S3xC6):2D6432,602
(S3×C6)⋊3D6 = C3⋊S3×D12φ: D6/C3C22 ⊆ Out S3×C672(S3xC6):3D6432,672
(S3×C6)⋊4D6 = C12⋊S32φ: D6/C3C22 ⊆ Out S3×C672(S3xC6):4D6432,673
(S3×C6)⋊5D6 = C3⋊S3×C3⋊D4φ: D6/C3C22 ⊆ Out S3×C672(S3xC6):5D6432,685
(S3×C6)⋊6D6 = C6223D6φ: D6/C3C22 ⊆ Out S3×C636(S3xC6):6D6432,686
(S3×C6)⋊7D6 = S3×D6⋊S3φ: D6/S3C2 ⊆ Out S3×C6488-(S3xC6):7D6432,597
(S3×C6)⋊8D6 = S3×C3⋊D12φ: D6/S3C2 ⊆ Out S3×C6248+(S3xC6):8D6432,598
(S3×C6)⋊9D6 = D64S32φ: D6/S3C2 ⊆ Out S3×C6248+(S3xC6):9D6432,599
(S3×C6)⋊10D6 = D6⋊S32φ: D6/S3C2 ⊆ Out S3×C6488-(S3xC6):10D6432,600
(S3×C6)⋊11D6 = C3×S3×D12φ: D6/S3C2 ⊆ Out S3×C6484(S3xC6):11D6432,649
(S3×C6)⋊12D6 = C3×D6⋊D6φ: D6/S3C2 ⊆ Out S3×C6484(S3xC6):12D6432,650
(S3×C6)⋊13D6 = C3×Dic3⋊D6φ: D6/S3C2 ⊆ Out S3×C6244(S3xC6):13D6432,659
(S3×C6)⋊14D6 = C2×S33φ: D6/S3C2 ⊆ Out S3×C6248+(S3xC6):14D6432,759
(S3×C6)⋊15D6 = C6×D6⋊S3φ: D6/C6C2 ⊆ Out S3×C648(S3xC6):15D6432,655
(S3×C6)⋊16D6 = C6×C3⋊D12φ: D6/C6C2 ⊆ Out S3×C648(S3xC6):16D6432,656
(S3×C6)⋊17D6 = C3×S3×C3⋊D4φ: D6/C6C2 ⊆ Out S3×C6244(S3xC6):17D6432,658
(S3×C6)⋊18D6 = C2×C336D4φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6):18D6432,680
(S3×C6)⋊19D6 = C2×C337D4φ: D6/C6C2 ⊆ Out S3×C672(S3xC6):19D6432,681
(S3×C6)⋊20D6 = S3×C327D4φ: D6/C6C2 ⊆ Out S3×C672(S3xC6):20D6432,684
(S3×C6)⋊21D6 = C22×S3×C3⋊S3φ: D6/C6C2 ⊆ Out S3×C672(S3xC6):21D6432,768

Non-split extensions G=N.Q with N=S3×C6 and Q=D6
extensionφ:Q→Out NdρLabelID
(S3×C6).1D6 = D125D9φ: D6/C3C22 ⊆ Out S3×C61444-(S3xC6).1D6432,285
(S3×C6).2D6 = D12⋊D9φ: D6/C3C22 ⊆ Out S3×C6724(S3xC6).2D6432,286
(S3×C6).3D6 = D9×D12φ: D6/C3C22 ⊆ Out S3×C6724+(S3xC6).3D6432,292
(S3×C6).4D6 = C36⋊D6φ: D6/C3C22 ⊆ Out S3×C6724(S3xC6).4D6432,293
(S3×C6).5D6 = Dic3.D18φ: D6/C3C22 ⊆ Out S3×C6724(S3xC6).5D6432,309
(S3×C6).6D6 = D18.4D6φ: D6/C3C22 ⊆ Out S3×C6724-(S3xC6).6D6432,310
(S3×C6).7D6 = D9×C3⋊D4φ: D6/C3C22 ⊆ Out S3×C6724(S3xC6).7D6432,314
(S3×C6).8D6 = D18⋊D6φ: D6/C3C22 ⊆ Out S3×C6364+(S3xC6).8D6432,315
(S3×C6).9D6 = (S3×C6).D6φ: D6/C3C22 ⊆ Out S3×C6248+(S3xC6).9D6432,606
(S3×C6).10D6 = D6.4S32φ: D6/C3C22 ⊆ Out S3×C6488-(S3xC6).10D6432,608
(S3×C6).11D6 = D6⋊S3⋊S3φ: D6/C3C22 ⊆ Out S3×C6488-(S3xC6).11D6432,610
(S3×C6).12D6 = D6.6S32φ: D6/C3C22 ⊆ Out S3×C6488-(S3xC6).12D6432,611
(S3×C6).13D6 = (C3×D12)⋊S3φ: D6/C3C22 ⊆ Out S3×C6144(S3xC6).13D6432,661
(S3×C6).14D6 = D12⋊(C3⋊S3)φ: D6/C3C22 ⊆ Out S3×C672(S3xC6).14D6432,662
(S3×C6).15D6 = C62.90D6φ: D6/C3C22 ⊆ Out S3×C672(S3xC6).15D6432,675
(S3×C6).16D6 = C62.91D6φ: D6/C3C22 ⊆ Out S3×C672(S3xC6).16D6432,676
(S3×C6).17D6 = S32×Dic3φ: D6/S3C2 ⊆ Out S3×C6488-(S3xC6).17D6432,594
(S3×C6).18D6 = S3×C6.D6φ: D6/S3C2 ⊆ Out S3×C6248+(S3xC6).18D6432,595
(S3×C6).19D6 = S3×C322Q8φ: D6/S3C2 ⊆ Out S3×C6488-(S3xC6).19D6432,603
(S3×C6).20D6 = D6.S32φ: D6/S3C2 ⊆ Out S3×C6488-(S3xC6).20D6432,607
(S3×C6).21D6 = D6.3S32φ: D6/S3C2 ⊆ Out S3×C6248+(S3xC6).21D6432,609
(S3×C6).22D6 = C3×D12⋊S3φ: D6/S3C2 ⊆ Out S3×C6484(S3xC6).22D6432,644
(S3×C6).23D6 = C3×D6.3D6φ: D6/S3C2 ⊆ Out S3×C6244(S3xC6).23D6432,652
(S3×C6).24D6 = C3×D6.4D6φ: D6/S3C2 ⊆ Out S3×C6244(S3xC6).24D6432,653
(S3×C6).25D6 = S3×Dic18φ: D6/C6C2 ⊆ Out S3×C61444-(S3xC6).25D6432,284
(S3×C6).26D6 = D6.D18φ: D6/C6C2 ⊆ Out S3×C6724(S3xC6).26D6432,287
(S3×C6).27D6 = D365S3φ: D6/C6C2 ⊆ Out S3×C61444-(S3xC6).27D6432,288
(S3×C6).28D6 = Dic9.D6φ: D6/C6C2 ⊆ Out S3×C6724+(S3xC6).28D6432,289
(S3×C6).29D6 = C4×S3×D9φ: D6/C6C2 ⊆ Out S3×C6724(S3xC6).29D6432,290
(S3×C6).30D6 = S3×D36φ: D6/C6C2 ⊆ Out S3×C6724+(S3xC6).30D6432,291
(S3×C6).31D6 = C2×S3×Dic9φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6).31D6432,308
(S3×C6).32D6 = C2×D6⋊D9φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6).32D6432,311
(S3×C6).33D6 = C2×C9⋊D12φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).33D6432,312
(S3×C6).34D6 = S3×C9⋊D4φ: D6/C6C2 ⊆ Out S3×C6724(S3xC6).34D6432,313
(S3×C6).35D6 = C22×S3×D9φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).35D6432,544
(S3×C6).36D6 = C3×D125S3φ: D6/C6C2 ⊆ Out S3×C6484(S3xC6).36D6432,643
(S3×C6).37D6 = C3×D6.D6φ: D6/C6C2 ⊆ Out S3×C6484(S3xC6).37D6432,646
(S3×C6).38D6 = C3×D6.6D6φ: D6/C6C2 ⊆ Out S3×C6484(S3xC6).38D6432,647
(S3×C6).39D6 = S3×C324Q8φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6).39D6432,660
(S3×C6).40D6 = C12.73S32φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).40D6432,667
(S3×C6).41D6 = C12.57S32φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6).41D6432,668
(S3×C6).42D6 = C12.58S32φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).42D6432,669
(S3×C6).43D6 = C4×S3×C3⋊S3φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).43D6432,670
(S3×C6).44D6 = S3×C12⋊S3φ: D6/C6C2 ⊆ Out S3×C672(S3xC6).44D6432,671
(S3×C6).45D6 = C2×S3×C3⋊Dic3φ: D6/C6C2 ⊆ Out S3×C6144(S3xC6).45D6432,674
(S3×C6).46D6 = C3×S3×Dic6φ: trivial image484(S3xC6).46D6432,642
(S3×C6).47D6 = S32×C12φ: trivial image484(S3xC6).47D6432,648
(S3×C6).48D6 = S3×C6×Dic3φ: trivial image48(S3xC6).48D6432,651

׿
×
𝔽