extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3:D12) = D36.S3 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | 4- | C6.1(C3:D12) | 432,62 |
C6.2(C3:D12) = C6.D36 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 72 | 4+ | C6.2(C3:D12) | 432,63 |
C6.3(C3:D12) = C3:D72 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 72 | 4+ | C6.3(C3:D12) | 432,64 |
C6.4(C3:D12) = C3:Dic36 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | 4- | C6.4(C3:D12) | 432,65 |
C6.5(C3:D12) = Dic3:Dic9 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.5(C3:D12) | 432,90 |
C6.6(C3:D12) = D18:Dic3 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.6(C3:D12) | 432,91 |
C6.7(C3:D12) = C2xC3:D36 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 72 | | C6.7(C3:D12) | 432,307 |
C6.8(C3:D12) = C33:8D8 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 72 | | C6.8(C3:D12) | 432,438 |
C6.9(C3:D12) = C33:16SD16 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.9(C3:D12) | 432,443 |
C6.10(C3:D12) = C33:17SD16 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 72 | | C6.10(C3:D12) | 432,444 |
C6.11(C3:D12) = C33:8Q16 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.11(C3:D12) | 432,447 |
C6.12(C3:D12) = C62.78D6 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.12(C3:D12) | 432,450 |
C6.13(C3:D12) = C62.80D6 | φ: C3:D12/C3xDic3 → C2 ⊆ Aut C6 | 144 | | C6.13(C3:D12) | 432,452 |
C6.14(C3:D12) = C9:D24 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.14(C3:D12) | 432,69 |
C6.15(C3:D12) = C36.D6 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.15(C3:D12) | 432,71 |
C6.16(C3:D12) = C18.D12 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | 4+ | C6.16(C3:D12) | 432,73 |
C6.17(C3:D12) = C9:Dic12 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | 4- | C6.17(C3:D12) | 432,75 |
C6.18(C3:D12) = Dic9:Dic3 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.18(C3:D12) | 432,88 |
C6.19(C3:D12) = C6.18D36 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.19(C3:D12) | 432,92 |
C6.20(C3:D12) = D6:Dic9 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.20(C3:D12) | 432,93 |
C6.21(C3:D12) = C2xC9:D12 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.21(C3:D12) | 432,312 |
C6.22(C3:D12) = C33:7D8 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.22(C3:D12) | 432,437 |
C6.23(C3:D12) = C33:14SD16 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.23(C3:D12) | 432,441 |
C6.24(C3:D12) = C33:15SD16 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.24(C3:D12) | 432,442 |
C6.25(C3:D12) = C33:7Q16 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.25(C3:D12) | 432,446 |
C6.26(C3:D12) = C62.77D6 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.26(C3:D12) | 432,449 |
C6.27(C3:D12) = C62.79D6 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 72 | | C6.27(C3:D12) | 432,451 |
C6.28(C3:D12) = C62.82D6 | φ: C3:D12/S3xC6 → C2 ⊆ Aut C6 | 144 | | C6.28(C3:D12) | 432,454 |
C6.29(C3:D12) = He3:3D8 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12+ | C6.29(C3:D12) | 432,83 |
C6.30(C3:D12) = He3:4SD16 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12- | C6.30(C3:D12) | 432,84 |
C6.31(C3:D12) = He3:5SD16 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | 12+ | C6.31(C3:D12) | 432,85 |
C6.32(C3:D12) = He3:3Q16 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 144 | 12- | C6.32(C3:D12) | 432,86 |
C6.33(C3:D12) = C62.D6 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 144 | | C6.33(C3:D12) | 432,95 |
C6.34(C3:D12) = C62.4D6 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.34(C3:D12) | 432,97 |
C6.35(C3:D12) = C62.5D6 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.35(C3:D12) | 432,98 |
C6.36(C3:D12) = C2xHe3:3D4 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 72 | | C6.36(C3:D12) | 432,322 |
C6.37(C3:D12) = C33:9D8 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.37(C3:D12) | 432,457 |
C6.38(C3:D12) = C33:18SD16 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.38(C3:D12) | 432,458 |
C6.39(C3:D12) = C33:9Q16 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | 4 | C6.39(C3:D12) | 432,459 |
C6.40(C3:D12) = C62.84D6 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | | C6.40(C3:D12) | 432,461 |
C6.41(C3:D12) = C62.85D6 | φ: C3:D12/C2xC3:S3 → C2 ⊆ Aut C6 | 48 | | C6.41(C3:D12) | 432,462 |
C6.42(C3:D12) = C3xC3:D24 | central extension (φ=1) | 48 | 4 | C6.42(C3:D12) | 432,419 |
C6.43(C3:D12) = C3xD12.S3 | central extension (φ=1) | 48 | 4 | C6.43(C3:D12) | 432,421 |
C6.44(C3:D12) = C3xC32:5SD16 | central extension (φ=1) | 48 | 4 | C6.44(C3:D12) | 432,422 |
C6.45(C3:D12) = C3xC32:3Q16 | central extension (φ=1) | 48 | 4 | C6.45(C3:D12) | 432,424 |
C6.46(C3:D12) = C3xD6:Dic3 | central extension (φ=1) | 48 | | C6.46(C3:D12) | 432,426 |
C6.47(C3:D12) = C3xC6.D12 | central extension (φ=1) | 48 | | C6.47(C3:D12) | 432,427 |
C6.48(C3:D12) = C3xDic3:Dic3 | central extension (φ=1) | 48 | | C6.48(C3:D12) | 432,428 |