Extensions 1→N→G→Q→1 with N=C3×C9⋊C8 and Q=C2

Direct product G=N×Q with N=C3×C9⋊C8 and Q=C2
dρLabelID
C6×C9⋊C8144C6xC9:C8432,124

Semidirect products G=N:Q with N=C3×C9⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C9⋊C8)⋊1C2 = C9⋊D24φ: C2/C1C2 ⊆ Out C3×C9⋊C8724+(C3xC9:C8):1C2432,69
(C3×C9⋊C8)⋊2C2 = C36.D6φ: C2/C1C2 ⊆ Out C3×C9⋊C81444-(C3xC9:C8):2C2432,71
(C3×C9⋊C8)⋊3C2 = C18.D12φ: C2/C1C2 ⊆ Out C3×C9⋊C8724+(C3xC9:C8):3C2432,73
(C3×C9⋊C8)⋊4C2 = C3×D4.D9φ: C2/C1C2 ⊆ Out C3×C9⋊C8724(C3xC9:C8):4C2432,148
(C3×C9⋊C8)⋊5C2 = C3×D4⋊D9φ: C2/C1C2 ⊆ Out C3×C9⋊C8724(C3xC9:C8):5C2432,149
(C3×C9⋊C8)⋊6C2 = C3×Q82D9φ: C2/C1C2 ⊆ Out C3×C9⋊C81444(C3xC9:C8):6C2432,157
(C3×C9⋊C8)⋊7C2 = C36.38D6φ: C2/C1C2 ⊆ Out C3×C9⋊C8724(C3xC9:C8):7C2432,59
(C3×C9⋊C8)⋊8C2 = C36.40D6φ: C2/C1C2 ⊆ Out C3×C9⋊C8724(C3xC9:C8):8C2432,61
(C3×C9⋊C8)⋊9C2 = S3×C9⋊C8φ: C2/C1C2 ⊆ Out C3×C9⋊C81444(C3xC9:C8):9C2432,66
(C3×C9⋊C8)⋊10C2 = D6.Dic9φ: C2/C1C2 ⊆ Out C3×C9⋊C81444(C3xC9:C8):10C2432,67
(C3×C9⋊C8)⋊11C2 = C3×C8⋊D9φ: C2/C1C2 ⊆ Out C3×C9⋊C81442(C3xC9:C8):11C2432,106
(C3×C9⋊C8)⋊12C2 = C3×C4.Dic9φ: C2/C1C2 ⊆ Out C3×C9⋊C8722(C3xC9:C8):12C2432,125
(C3×C9⋊C8)⋊13C2 = D9×C24φ: trivial image1442(C3xC9:C8):13C2432,105

Non-split extensions G=N.Q with N=C3×C9⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C9⋊C8).1C2 = C9⋊Dic12φ: C2/C1C2 ⊆ Out C3×C9⋊C81444-(C3xC9:C8).1C2432,75
(C3×C9⋊C8).2C2 = C3×C9⋊Q16φ: C2/C1C2 ⊆ Out C3×C9⋊C81444(C3xC9:C8).2C2432,156

׿
×
𝔽