extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D12)⋊1S3 = C3×C32⋊2D8 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):1S3 | 432,418 |
(C3×D12)⋊2S3 = C33⋊6D8 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | | (C3xD12):2S3 | 432,436 |
(C3×D12)⋊3S3 = C33⋊7D8 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | | (C3xD12):3S3 | 432,437 |
(C3×D12)⋊4S3 = C3×D12⋊S3 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):4S3 | 432,644 |
(C3×D12)⋊5S3 = C3×D6⋊D6 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):5S3 | 432,650 |
(C3×D12)⋊6S3 = (C3×D12)⋊S3 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | | (C3xD12):6S3 | 432,661 |
(C3×D12)⋊7S3 = D12⋊(C3⋊S3) | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | | (C3xD12):7S3 | 432,662 |
(C3×D12)⋊8S3 = C3⋊S3×D12 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | | (C3xD12):8S3 | 432,672 |
(C3×D12)⋊9S3 = C12⋊S32 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | | (C3xD12):9S3 | 432,673 |
(C3×D12)⋊10S3 = C3×C3⋊D24 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12):10S3 | 432,419 |
(C3×D12)⋊11S3 = C3×D12⋊5S3 | φ: trivial image | 48 | 4 | (C3xD12):11S3 | 432,643 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×D12).1S3 = D36⋊S3 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | 4 | (C3xD12).1S3 | 432,68 |
(C3×D12).2S3 = C9⋊D24 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | 4+ | (C3xD12).2S3 | 432,69 |
(C3×D12).3S3 = D12.D9 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | 4 | (C3xD12).3S3 | 432,70 |
(C3×D12).4S3 = C36.D6 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | 4- | (C3xD12).4S3 | 432,71 |
(C3×D12).5S3 = D12⋊5D9 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | 4- | (C3xD12).5S3 | 432,285 |
(C3×D12).6S3 = D12⋊D9 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | 4 | (C3xD12).6S3 | 432,286 |
(C3×D12).7S3 = D9×D12 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | 4+ | (C3xD12).7S3 | 432,292 |
(C3×D12).8S3 = C36⋊D6 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 72 | 4 | (C3xD12).8S3 | 432,293 |
(C3×D12).9S3 = C3×Dic6⋊S3 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).9S3 | 432,420 |
(C3×D12).10S3 = C33⋊12SD16 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | | (C3xD12).10S3 | 432,439 |
(C3×D12).11S3 = C33⋊14SD16 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 144 | | (C3xD12).11S3 | 432,441 |
(C3×D12).12S3 = C3×D12.S3 | φ: S3/C3 → C2 ⊆ Out C3×D12 | 48 | 4 | (C3xD12).12S3 | 432,421 |