Extensions 1→N→G→Q→1 with N=C3×D12 and Q=S3

Direct product G=N×Q with N=C3×D12 and Q=S3
dρLabelID
C3×S3×D12484C3xS3xD12432,649

Semidirect products G=N:Q with N=C3×D12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D12)⋊1S3 = C3×C322D8φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12):1S3432,418
(C3×D12)⋊2S3 = C336D8φ: S3/C3C2 ⊆ Out C3×D12144(C3xD12):2S3432,436
(C3×D12)⋊3S3 = C337D8φ: S3/C3C2 ⊆ Out C3×D1272(C3xD12):3S3432,437
(C3×D12)⋊4S3 = C3×D12⋊S3φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12):4S3432,644
(C3×D12)⋊5S3 = C3×D6⋊D6φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12):5S3432,650
(C3×D12)⋊6S3 = (C3×D12)⋊S3φ: S3/C3C2 ⊆ Out C3×D12144(C3xD12):6S3432,661
(C3×D12)⋊7S3 = D12⋊(C3⋊S3)φ: S3/C3C2 ⊆ Out C3×D1272(C3xD12):7S3432,662
(C3×D12)⋊8S3 = C3⋊S3×D12φ: S3/C3C2 ⊆ Out C3×D1272(C3xD12):8S3432,672
(C3×D12)⋊9S3 = C12⋊S32φ: S3/C3C2 ⊆ Out C3×D1272(C3xD12):9S3432,673
(C3×D12)⋊10S3 = C3×C3⋊D24φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12):10S3432,419
(C3×D12)⋊11S3 = C3×D125S3φ: trivial image484(C3xD12):11S3432,643

Non-split extensions G=N.Q with N=C3×D12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×D12).1S3 = D36⋊S3φ: S3/C3C2 ⊆ Out C3×D121444(C3xD12).1S3432,68
(C3×D12).2S3 = C9⋊D24φ: S3/C3C2 ⊆ Out C3×D12724+(C3xD12).2S3432,69
(C3×D12).3S3 = D12.D9φ: S3/C3C2 ⊆ Out C3×D121444(C3xD12).3S3432,70
(C3×D12).4S3 = C36.D6φ: S3/C3C2 ⊆ Out C3×D121444-(C3xD12).4S3432,71
(C3×D12).5S3 = D125D9φ: S3/C3C2 ⊆ Out C3×D121444-(C3xD12).5S3432,285
(C3×D12).6S3 = D12⋊D9φ: S3/C3C2 ⊆ Out C3×D12724(C3xD12).6S3432,286
(C3×D12).7S3 = D9×D12φ: S3/C3C2 ⊆ Out C3×D12724+(C3xD12).7S3432,292
(C3×D12).8S3 = C36⋊D6φ: S3/C3C2 ⊆ Out C3×D12724(C3xD12).8S3432,293
(C3×D12).9S3 = C3×Dic6⋊S3φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12).9S3432,420
(C3×D12).10S3 = C3312SD16φ: S3/C3C2 ⊆ Out C3×D12144(C3xD12).10S3432,439
(C3×D12).11S3 = C3314SD16φ: S3/C3C2 ⊆ Out C3×D12144(C3xD12).11S3432,441
(C3×D12).12S3 = C3×D12.S3φ: S3/C3C2 ⊆ Out C3×D12484(C3xD12).12S3432,421

׿
×
𝔽