metacyclic, supersoluble, monomial, Z-group
Aliases: C11⋊C40, C22.C20, C4.2F11, C44.2C10, C11⋊C8⋊C5, C11⋊C5⋊C8, C2.(C11⋊C20), (C2×C11⋊C5).C4, (C4×C11⋊C5).2C2, SmallGroup(440,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C22 — C44 — C4×C11⋊C5 — C11⋊C40 |
C11 — C11⋊C40 |
Generators and relations for C11⋊C40
G = < a,b | a11=b40=1, bab-1=a8 >
(1 24 69 48 40 16 53 77 85 32 61)(2 86 17 70 62 78 41 25 33 54 9)(3 34 79 18 10 26 63 87 55 42 71)(4 56 27 80 72 88 11 35 43 64 19)(5 44 49 28 20 36 73 57 65 12 81)(6 66 37 50 82 58 21 45 13 74 29)(7 14 59 38 30 46 83 67 75 22 51)(8 76 47 60 52 68 31 15 23 84 39)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
G:=sub<Sym(88)| (1,24,69,48,40,16,53,77,85,32,61)(2,86,17,70,62,78,41,25,33,54,9)(3,34,79,18,10,26,63,87,55,42,71)(4,56,27,80,72,88,11,35,43,64,19)(5,44,49,28,20,36,73,57,65,12,81)(6,66,37,50,82,58,21,45,13,74,29)(7,14,59,38,30,46,83,67,75,22,51)(8,76,47,60,52,68,31,15,23,84,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)>;
G:=Group( (1,24,69,48,40,16,53,77,85,32,61)(2,86,17,70,62,78,41,25,33,54,9)(3,34,79,18,10,26,63,87,55,42,71)(4,56,27,80,72,88,11,35,43,64,19)(5,44,49,28,20,36,73,57,65,12,81)(6,66,37,50,82,58,21,45,13,74,29)(7,14,59,38,30,46,83,67,75,22,51)(8,76,47,60,52,68,31,15,23,84,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88) );
G=PermutationGroup([[(1,24,69,48,40,16,53,77,85,32,61),(2,86,17,70,62,78,41,25,33,54,9),(3,34,79,18,10,26,63,87,55,42,71),(4,56,27,80,72,88,11,35,43,64,19),(5,44,49,28,20,36,73,57,65,12,81),(6,66,37,50,82,58,21,45,13,74,29),(7,14,59,38,30,46,83,67,75,22,51),(8,76,47,60,52,68,31,15,23,84,39)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)]])
44 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 11 | 20A | ··· | 20H | 22 | 40A | ··· | 40P | 44A | 44B |
order | 1 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 11 | 20 | ··· | 20 | 22 | 40 | ··· | 40 | 44 | 44 |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | 11 | ··· | 11 | 10 | 11 | ··· | 11 | 10 | 10 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 | 10 | 10 |
type | + | + | + | - | |||||||
image | C1 | C2 | C4 | C5 | C8 | C10 | C20 | C40 | F11 | C11⋊C20 | C11⋊C40 |
kernel | C11⋊C40 | C4×C11⋊C5 | C2×C11⋊C5 | C11⋊C8 | C11⋊C5 | C44 | C22 | C11 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 16 | 1 | 1 | 2 |
Matrix representation of C11⋊C40 ►in GL10(𝔽881)
880 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
880 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
880 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
880 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
880 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
880 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
880 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
880 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
880 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
880 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 560 | 321 | 321 | 321 | 560 | 0 | 814 | 0 | 0 |
321 | 0 | 0 | 321 | 254 | 560 | 0 | 560 | 0 | 560 |
321 | 814 | 0 | 321 | 0 | 560 | 560 | 0 | 321 | 0 |
321 | 560 | 0 | 0 | 321 | 0 | 0 | 560 | 321 | 814 |
0 | 0 | 321 | 321 | 0 | 0 | 814 | 560 | 321 | 560 |
321 | 560 | 321 | 254 | 0 | 0 | 560 | 560 | 0 | 0 |
254 | 560 | 321 | 0 | 0 | 560 | 0 | 0 | 321 | 560 |
0 | 560 | 0 | 321 | 321 | 0 | 560 | 0 | 254 | 560 |
321 | 0 | 321 | 0 | 321 | 814 | 560 | 0 | 0 | 560 |
0 | 0 | 254 | 0 | 321 | 560 | 560 | 560 | 321 | 0 |
G:=sub<GL(10,GF(881))| [880,880,880,880,880,880,880,880,880,880,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0],[0,321,321,321,0,321,254,0,321,0,560,0,814,560,0,560,560,560,0,0,321,0,0,0,321,321,321,0,321,254,321,321,321,0,321,254,0,321,0,0,321,254,0,321,0,0,0,321,321,321,560,560,560,0,0,0,560,0,814,560,0,0,560,0,814,560,0,560,560,560,814,560,0,560,560,560,0,0,0,560,0,0,321,321,321,0,321,254,0,321,0,560,0,814,560,0,560,560,560,0] >;
C11⋊C40 in GAP, Magma, Sage, TeX
C_{11}\rtimes C_{40}
% in TeX
G:=Group("C11:C40");
// GroupNames label
G:=SmallGroup(440,1);
// by ID
G=gap.SmallGroup(440,1);
# by ID
G:=PCGroup([5,-2,-5,-2,-2,-11,50,42,10004,4509]);
// Polycyclic
G:=Group<a,b|a^11=b^40=1,b*a*b^-1=a^8>;
// generators/relations
Export