Copied to
clipboard

G = C4.F11order 440 = 23·5·11

The non-split extension by C4 of F11 acting via F11/C11⋊C5=C2

metacyclic, supersoluble, monomial

Aliases: C4.F11, Dic22⋊C5, C44.1C10, Dic11.C10, C11⋊C5⋊Q8, C11⋊(C5×Q8), C11⋊C20.C2, C2.3(C2×F11), C22.1(C2×C10), (C4×C11⋊C5).1C2, (C2×C11⋊C5).1C22, SmallGroup(440,7)

Series: Derived Chief Lower central Upper central

C1C22 — C4.F11
C1C11C22C2×C11⋊C5C11⋊C20 — C4.F11
C11C22 — C4.F11
C1C2C4

Generators and relations for C4.F11
 G = < a,b,c | a4=b11=1, c10=a2, ab=ba, cac-1=a-1, cbc-1=b6 >

11C5
11C4
11C4
11C10
11Q8
11C20
11C20
11C20
11C5×Q8

Character table of C4.F11

 class 124A4B4C5A5B5C5D10A10B10C10D1120A20B20C20D20E20F20G20H20I20J20K20L2244A44B
 size 1122222111111111111111110222222222222222222222222101010
ρ111111111111111111111111111111    trivial
ρ211-11-11111111111-1-1-1-1-1-1-1111-11-1-1    linear of order 2
ρ311-1-11111111111-1-1-11111-1-1-1-1-11-1-1    linear of order 2
ρ4111-1-1111111111-111-1-1-1-11-1-1-11111    linear of order 2
ρ511111ζ5ζ54ζ52ζ53ζ5ζ52ζ54ζ531ζ52ζ52ζ53ζ53ζ5ζ54ζ52ζ5ζ53ζ5ζ54ζ54111    linear of order 5
ρ611111ζ54ζ5ζ53ζ52ζ54ζ53ζ5ζ521ζ53ζ53ζ52ζ52ζ54ζ5ζ53ζ54ζ52ζ54ζ5ζ5111    linear of order 5
ρ7111-1-1ζ5ζ54ζ52ζ53ζ5ζ52ζ54ζ53152ζ52ζ535355452ζ553554ζ54111    linear of order 10
ρ811111ζ53ζ52ζ5ζ54ζ53ζ5ζ52ζ541ζ5ζ5ζ54ζ54ζ53ζ52ζ5ζ53ζ54ζ53ζ52ζ52111    linear of order 5
ρ911-11-1ζ53ζ52ζ5ζ54ζ53ζ5ζ52ζ541ζ5554545352553ζ54ζ53ζ52521-1-1    linear of order 10
ρ1011-1-11ζ54ζ5ζ53ζ52ζ54ζ53ζ5ζ521535352ζ52ζ54ζ5ζ53545254551-1-1    linear of order 10
ρ1111-1-11ζ52ζ53ζ54ζ5ζ52ζ54ζ53ζ5154545ζ5ζ52ζ53ζ545255253531-1-1    linear of order 10
ρ1211111ζ52ζ53ζ54ζ5ζ52ζ54ζ53ζ51ζ54ζ54ζ5ζ5ζ52ζ53ζ54ζ52ζ5ζ52ζ53ζ53111    linear of order 5
ρ13111-1-1ζ54ζ5ζ53ζ52ζ54ζ53ζ5ζ52153ζ53ζ525254553ζ5452545ζ5111    linear of order 10
ρ14111-1-1ζ53ζ52ζ5ζ54ζ53ζ5ζ52ζ5415ζ5ζ545453525ζ53545352ζ52111    linear of order 10
ρ1511-11-1ζ5ζ54ζ52ζ53ζ5ζ52ζ54ζ531ζ52525353554525ζ53ζ5ζ54541-1-1    linear of order 10
ρ1611-1-11ζ5ζ54ζ52ζ53ζ5ζ52ζ54ζ531525253ζ53ζ5ζ54ζ52553554541-1-1    linear of order 10
ρ1711-1-11ζ53ζ52ζ5ζ54ζ53ζ5ζ52ζ5415554ζ54ζ53ζ52ζ553545352521-1-1    linear of order 10
ρ1811-11-1ζ52ζ53ζ54ζ5ζ52ζ54ζ53ζ51ζ54545552535452ζ5ζ52ζ53531-1-1    linear of order 10
ρ1911-11-1ζ54ζ5ζ53ζ52ζ54ζ53ζ5ζ521ζ535352525455354ζ52ζ54ζ551-1-1    linear of order 10
ρ20111-1-1ζ52ζ53ζ54ζ5ζ52ζ54ζ53ζ5154ζ54ζ55525354ζ5255253ζ53111    linear of order 10
ρ212-20002222-2-2-2-22000000000000-200    symplectic lifted from Q8, Schur index 2
ρ222-20005455352-2ζ54-2ζ53-2ζ5-2ζ522000000000000-200    complex lifted from C5×Q8
ρ232-20005253545-2ζ52-2ζ54-2ζ53-2ζ52000000000000-200    complex lifted from C5×Q8
ρ242-20005352554-2ζ53-2ζ5-2ζ52-2ζ542000000000000-200    complex lifted from C5×Q8
ρ252-20005545253-2ζ5-2ζ52-2ζ54-2ζ532000000000000-200    complex lifted from C5×Q8
ρ261010-100000000000-1000000000000-111    orthogonal lifted from C2×F11
ρ271010100000000000-1000000000000-1-1-1    orthogonal lifted from F11
ρ2810-1000000000000-1000000000000111-11    symplectic faithful, Schur index 2
ρ2910-1000000000000-10000000000001-1111    symplectic faithful, Schur index 2

Smallest permutation representation of C4.F11
On 88 points
Generators in S88
(1 7 3 5)(2 6 4 8)(9 72 19 82)(10 83 20 73)(11 74 21 84)(12 85 22 75)(13 76 23 86)(14 87 24 77)(15 78 25 88)(16 69 26 79)(17 80 27 70)(18 71 28 81)(29 65 39 55)(30 56 40 66)(31 67 41 57)(32 58 42 68)(33 49 43 59)(34 60 44 50)(35 51 45 61)(36 62 46 52)(37 53 47 63)(38 64 48 54)
(1 12 55 20 24 16 63 51 67 28 59)(2 64 13 52 56 68 21 9 25 60 17)(3 22 65 10 14 26 53 61 57 18 49)(4 54 23 62 66 58 11 19 15 50 27)(5 75 39 83 87 79 47 35 31 71 43)(6 48 76 36 40 32 84 72 88 44 80)(7 85 29 73 77 69 37 45 41 81 33)(8 38 86 46 30 42 74 82 78 34 70)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)

G:=sub<Sym(88)| (1,7,3,5)(2,6,4,8)(9,72,19,82)(10,83,20,73)(11,74,21,84)(12,85,22,75)(13,76,23,86)(14,87,24,77)(15,78,25,88)(16,69,26,79)(17,80,27,70)(18,71,28,81)(29,65,39,55)(30,56,40,66)(31,67,41,57)(32,58,42,68)(33,49,43,59)(34,60,44,50)(35,51,45,61)(36,62,46,52)(37,53,47,63)(38,64,48,54), (1,12,55,20,24,16,63,51,67,28,59)(2,64,13,52,56,68,21,9,25,60,17)(3,22,65,10,14,26,53,61,57,18,49)(4,54,23,62,66,58,11,19,15,50,27)(5,75,39,83,87,79,47,35,31,71,43)(6,48,76,36,40,32,84,72,88,44,80)(7,85,29,73,77,69,37,45,41,81,33)(8,38,86,46,30,42,74,82,78,34,70), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)>;

G:=Group( (1,7,3,5)(2,6,4,8)(9,72,19,82)(10,83,20,73)(11,74,21,84)(12,85,22,75)(13,76,23,86)(14,87,24,77)(15,78,25,88)(16,69,26,79)(17,80,27,70)(18,71,28,81)(29,65,39,55)(30,56,40,66)(31,67,41,57)(32,58,42,68)(33,49,43,59)(34,60,44,50)(35,51,45,61)(36,62,46,52)(37,53,47,63)(38,64,48,54), (1,12,55,20,24,16,63,51,67,28,59)(2,64,13,52,56,68,21,9,25,60,17)(3,22,65,10,14,26,53,61,57,18,49)(4,54,23,62,66,58,11,19,15,50,27)(5,75,39,83,87,79,47,35,31,71,43)(6,48,76,36,40,32,84,72,88,44,80)(7,85,29,73,77,69,37,45,41,81,33)(8,38,86,46,30,42,74,82,78,34,70), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88) );

G=PermutationGroup([[(1,7,3,5),(2,6,4,8),(9,72,19,82),(10,83,20,73),(11,74,21,84),(12,85,22,75),(13,76,23,86),(14,87,24,77),(15,78,25,88),(16,69,26,79),(17,80,27,70),(18,71,28,81),(29,65,39,55),(30,56,40,66),(31,67,41,57),(32,58,42,68),(33,49,43,59),(34,60,44,50),(35,51,45,61),(36,62,46,52),(37,53,47,63),(38,64,48,54)], [(1,12,55,20,24,16,63,51,67,28,59),(2,64,13,52,56,68,21,9,25,60,17),(3,22,65,10,14,26,53,61,57,18,49),(4,54,23,62,66,58,11,19,15,50,27),(5,75,39,83,87,79,47,35,31,71,43),(6,48,76,36,40,32,84,72,88,44,80),(7,85,29,73,77,69,37,45,41,81,33),(8,38,86,46,30,42,74,82,78,34,70)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)]])

Matrix representation of C4.F11 in GL12(𝔽661)

16590000000000
16600000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001
,
100000000000
010000000000
00000000000660
00100000000660
00010000000660
00001000000660
00000100000660
00000010000660
00000001000660
00000000100660
00000000010660
00000000001660
,
515830000000000
2261460000000000
0056505650565316960096
002209656500960056596
0000565565003169656596
0056531605650969605650
0009656556556596031600
000022005659696965650
000960565565096022096
005659656522000969600
0056596005650096565316
005650056522096096096

G:=sub<GL(12,GF(661))| [1,1,0,0,0,0,0,0,0,0,0,0,659,660,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,660,660,660,660,660,660,660,660,660,660],[515,226,0,0,0,0,0,0,0,0,0,0,83,146,0,0,0,0,0,0,0,0,0,0,0,0,565,220,0,565,0,0,0,565,565,565,0,0,0,96,0,316,96,0,96,96,96,0,0,0,565,565,565,0,565,220,0,565,0,0,0,0,0,0,565,565,565,0,565,220,0,565,0,0,565,0,0,0,565,565,565,0,565,220,0,0,316,96,0,96,96,96,0,0,0,96,0,0,96,0,316,96,0,96,96,96,0,0,0,0,0,0,96,0,316,96,0,96,96,96,0,0,0,565,565,565,0,565,220,0,565,0,0,0,96,96,96,0,0,0,96,0,316,96] >;

C4.F11 in GAP, Magma, Sage, TeX

C_4.F_{11}
% in TeX

G:=Group("C4.F11");
// GroupNames label

G:=SmallGroup(440,7);
// by ID

G=gap.SmallGroup(440,7);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-11,100,221,106,10004,2264]);
// Polycyclic

G:=Group<a,b,c|a^4=b^11=1,c^10=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^6>;
// generators/relations

Export

Subgroup lattice of C4.F11 in TeX
Character table of C4.F11 in TeX

׿
×
𝔽