Copied to
clipboard

G = C11×F7order 462 = 2·3·7·11

Direct product of C11 and F7

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: C11×F7, C7⋊C66, D7⋊C33, C773C6, C7⋊C3⋊C22, (C11×D7)⋊C3, (C11×C7⋊C3)⋊3C2, SmallGroup(462,2)

Series: Derived Chief Lower central Upper central

C1C7 — C11×F7
C1C7C77C11×C7⋊C3 — C11×F7
C7 — C11×F7
C1C11

Generators and relations for C11×F7
 G = < a,b,c | a11=b7=c6=1, ab=ba, ac=ca, cbc-1=b5 >

7C2
7C3
7C6
7C22
7C33
7C66

Smallest permutation representation of C11×F7
On 77 points
Generators in S77
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)
(1 38 48 28 15 60 70)(2 39 49 29 16 61 71)(3 40 50 30 17 62 72)(4 41 51 31 18 63 73)(5 42 52 32 19 64 74)(6 43 53 33 20 65 75)(7 44 54 23 21 66 76)(8 34 55 24 22 56 77)(9 35 45 25 12 57 67)(10 36 46 26 13 58 68)(11 37 47 27 14 59 69)
(12 57 35 25 45 67)(13 58 36 26 46 68)(14 59 37 27 47 69)(15 60 38 28 48 70)(16 61 39 29 49 71)(17 62 40 30 50 72)(18 63 41 31 51 73)(19 64 42 32 52 74)(20 65 43 33 53 75)(21 66 44 23 54 76)(22 56 34 24 55 77)

G:=sub<Sym(77)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77), (1,38,48,28,15,60,70)(2,39,49,29,16,61,71)(3,40,50,30,17,62,72)(4,41,51,31,18,63,73)(5,42,52,32,19,64,74)(6,43,53,33,20,65,75)(7,44,54,23,21,66,76)(8,34,55,24,22,56,77)(9,35,45,25,12,57,67)(10,36,46,26,13,58,68)(11,37,47,27,14,59,69), (12,57,35,25,45,67)(13,58,36,26,46,68)(14,59,37,27,47,69)(15,60,38,28,48,70)(16,61,39,29,49,71)(17,62,40,30,50,72)(18,63,41,31,51,73)(19,64,42,32,52,74)(20,65,43,33,53,75)(21,66,44,23,54,76)(22,56,34,24,55,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77), (1,38,48,28,15,60,70)(2,39,49,29,16,61,71)(3,40,50,30,17,62,72)(4,41,51,31,18,63,73)(5,42,52,32,19,64,74)(6,43,53,33,20,65,75)(7,44,54,23,21,66,76)(8,34,55,24,22,56,77)(9,35,45,25,12,57,67)(10,36,46,26,13,58,68)(11,37,47,27,14,59,69), (12,57,35,25,45,67)(13,58,36,26,46,68)(14,59,37,27,47,69)(15,60,38,28,48,70)(16,61,39,29,49,71)(17,62,40,30,50,72)(18,63,41,31,51,73)(19,64,42,32,52,74)(20,65,43,33,53,75)(21,66,44,23,54,76)(22,56,34,24,55,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77)], [(1,38,48,28,15,60,70),(2,39,49,29,16,61,71),(3,40,50,30,17,62,72),(4,41,51,31,18,63,73),(5,42,52,32,19,64,74),(6,43,53,33,20,65,75),(7,44,54,23,21,66,76),(8,34,55,24,22,56,77),(9,35,45,25,12,57,67),(10,36,46,26,13,58,68),(11,37,47,27,14,59,69)], [(12,57,35,25,45,67),(13,58,36,26,46,68),(14,59,37,27,47,69),(15,60,38,28,48,70),(16,61,39,29,49,71),(17,62,40,30,50,72),(18,63,41,31,51,73),(19,64,42,32,52,74),(20,65,43,33,53,75),(21,66,44,23,54,76),(22,56,34,24,55,77)]])

77 conjugacy classes

class 1  2 3A3B6A6B 7 11A···11J22A···22J33A···33T66A···66T77A···77J
order123366711···1122···2233···3366···6677···77
size17777761···17···77···77···76···6

77 irreducible representations

dim1111111166
type+++
imageC1C2C3C6C11C22C33C66F7C11×F7
kernelC11×F7C11×C7⋊C3C11×D7C77F7C7⋊C3D7C7C11C1
# reps112210102020110

Matrix representation of C11×F7 in GL6(𝔽463)

42500000
04250000
00425000
00042500
00004250
00000425
,
00000462
10000462
01000462
00100462
00010462
00001462
,
10462000
00462001
00462100
01462000
00462000
00462010

G:=sub<GL(6,GF(463))| [425,0,0,0,0,0,0,425,0,0,0,0,0,0,425,0,0,0,0,0,0,425,0,0,0,0,0,0,425,0,0,0,0,0,0,425],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,462,462,462,462,462,462],[1,0,0,0,0,0,0,0,0,1,0,0,462,462,462,462,462,462,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0] >;

C11×F7 in GAP, Magma, Sage, TeX

C_{11}\times F_7
% in TeX

G:=Group("C11xF7");
// GroupNames label

G:=SmallGroup(462,2);
// by ID

G=gap.SmallGroup(462,2);
# by ID

G:=PCGroup([4,-2,-3,-11,-7,6339,2119]);
// Polycyclic

G:=Group<a,b,c|a^11=b^7=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C11×F7 in TeX

׿
×
𝔽