extension | φ:Q→Out N | d | ρ | Label | ID |
(C4xD5).1D6 = C24:D10 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 4+ | (C4xD5).1D6 | 480,325 |
(C4xD5).2D6 = D24:D5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).2D6 | 480,326 |
(C4xD5).3D6 = Dic60:C2 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 4- | (C4xD5).3D6 | 480,336 |
(C4xD5).4D6 = C24.2D10 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).4D6 | 480,337 |
(C4xD5).5D6 = Dic10:3D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).5D6 | 480,554 |
(C4xD5).6D6 = C60.8C23 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).6D6 | 480,560 |
(C4xD5).7D6 = D12:10D10 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).7D6 | 480,565 |
(C4xD5).8D6 = D20.9D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).8D6 | 480,567 |
(C4xD5).9D6 = D20:D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).9D6 | 480,578 |
(C4xD5).10D6 = D20.13D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).10D6 | 480,584 |
(C4xD5).11D6 = D12.27D10 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).11D6 | 480,589 |
(C4xD5).12D6 = C60.39C23 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).12D6 | 480,591 |
(C4xD5).13D6 = D20.38D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).13D6 | 480,1076 |
(C4xD5).14D6 = D20.39D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 4- | (C4xD5).14D6 | 480,1077 |
(C4xD5).15D6 = C15:2- 1+4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).15D6 | 480,1096 |
(C4xD5).16D6 = D20.29D6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).16D6 | 480,1104 |
(C4xD5).17D6 = C30.33C24 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).17D6 | 480,1105 |
(C4xD5).18D6 = D12.29D10 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).18D6 | 480,1106 |
(C4xD5).19D6 = D60:C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).19D6 | 480,227 |
(C4xD5).20D6 = D12:F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).20D6 | 480,228 |
(C4xD5).21D6 = Dic6:F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).21D6 | 480,229 |
(C4xD5).22D6 = Dic30:C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).22D6 | 480,230 |
(C4xD5).23D6 = D12:4F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).23D6 | 480,231 |
(C4xD5).24D6 = D12:2F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).24D6 | 480,232 |
(C4xD5).25D6 = D60:2C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).25D6 | 480,233 |
(C4xD5).26D6 = D60:5C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).26D6 | 480,234 |
(C4xD5).27D6 = D20:Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).27D6 | 480,312 |
(C4xD5).28D6 = Dic10:Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).28D6 | 480,313 |
(C4xD5).29D6 = Dic10:2Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).29D6 | 480,314 |
(C4xD5).30D6 = D20:2Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).30D6 | 480,315 |
(C4xD5).31D6 = F5xDic6 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).31D6 | 480,982 |
(C4xD5).32D6 = Dic6:5F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).32D6 | 480,984 |
(C4xD5).33D6 = D12.2F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).33D6 | 480,987 |
(C4xD5).34D6 = D12.F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).34D6 | 480,989 |
(C4xD5).35D6 = D60.C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).35D6 | 480,990 |
(C4xD5).36D6 = Dic6.F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).36D6 | 480,992 |
(C4xD5).37D6 = F5xD12 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 60 | 8+ | (C4xD5).37D6 | 480,995 |
(C4xD5).38D6 = D60:3C4 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 60 | 8+ | (C4xD5).38D6 | 480,997 |
(C4xD5).39D6 = Dic10.Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8 | (C4xD5).39D6 | 480,1066 |
(C4xD5).40D6 = D4xC3:F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 60 | 8 | (C4xD5).40D6 | 480,1067 |
(C4xD5).41D6 = D20.Dic3 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 240 | 8 | (C4xD5).41D6 | 480,1068 |
(C4xD5).42D6 = Q8xC3:F5 | φ: D6/C3 → C22 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).42D6 | 480,1069 |
(C4xD5).43D6 = D5xD4:S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).43D6 | 480,553 |
(C4xD5).44D6 = D5xD4.S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).44D6 | 480,559 |
(C4xD5).45D6 = D12.24D10 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).45D6 | 480,566 |
(C4xD5).46D6 = C60.16C23 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).46D6 | 480,568 |
(C4xD5).47D6 = D5xQ8:2S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).47D6 | 480,577 |
(C4xD5).48D6 = D5xC3:Q16 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).48D6 | 480,583 |
(C4xD5).49D6 = D20.14D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8- | (C4xD5).49D6 | 480,590 |
(C4xD5).50D6 = D20.D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8+ | (C4xD5).50D6 | 480,592 |
(C4xD5).51D6 = D5xD4:2S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).51D6 | 480,1098 |
(C4xD5).52D6 = S3xQ8xD5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8- | (C4xD5).52D6 | 480,1107 |
(C4xD5).53D6 = D5xQ8:3S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8+ | (C4xD5).53D6 | 480,1108 |
(C4xD5).54D6 = S3xC8:D5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).54D6 | 480,321 |
(C4xD5).55D6 = C40:D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).55D6 | 480,322 |
(C4xD5).56D6 = C40.55D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).56D6 | 480,343 |
(C4xD5).57D6 = C40.35D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).57D6 | 480,344 |
(C4xD5).58D6 = D20.3Dic3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).58D6 | 480,359 |
(C4xD5).59D6 = D20.2Dic3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).59D6 | 480,360 |
(C4xD5).60D6 = Dic5.Dic6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).60D6 | 480,235 |
(C4xD5).61D6 = Dic5.4Dic6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).61D6 | 480,236 |
(C4xD5).62D6 = D10.Dic6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8 | (C4xD5).62D6 | 480,237 |
(C4xD5).63D6 = D10.2Dic6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 240 | 8 | (C4xD5).63D6 | 480,238 |
(C4xD5).64D6 = C4:F5:3S3 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).64D6 | 480,983 |
(C4xD5).65D6 = S3xC4.F5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).65D6 | 480,988 |
(C4xD5).66D6 = D15:M4(2) | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).66D6 | 480,991 |
(C4xD5).67D6 = S3xC4:F5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 60 | 8 | (C4xD5).67D6 | 480,996 |
(C4xD5).68D6 = F5xC3:C8 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).68D6 | 480,223 |
(C4xD5).69D6 = C30.C42 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).69D6 | 480,224 |
(C4xD5).70D6 = C30.3C42 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).70D6 | 480,225 |
(C4xD5).71D6 = C30.4C42 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).71D6 | 480,226 |
(C4xD5).72D6 = (C4xS3):F5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).72D6 | 480,985 |
(C4xD5).73D6 = S3xD5:C8 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).73D6 | 480,986 |
(C4xD5).74D6 = C5:C8:D6 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 120 | 8 | (C4xD5).74D6 | 480,993 |
(C4xD5).75D6 = C4xS3xF5 | φ: D6/S3 → C2 ⊆ Out C4xD5 | 60 | 8 | (C4xD5).75D6 | 480,994 |
(C4xD5).76D6 = D5xC24:C2 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).76D6 | 480,323 |
(C4xD5).77D6 = D5xD24 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4+ | (C4xD5).77D6 | 480,324 |
(C4xD5).78D6 = D5xDic12 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4- | (C4xD5).78D6 | 480,335 |
(C4xD5).79D6 = C40.31D6 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).79D6 | 480,345 |
(C4xD5).80D6 = D24:7D5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4- | (C4xD5).80D6 | 480,346 |
(C4xD5).81D6 = D120:C2 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4+ | (C4xD5).81D6 | 480,347 |
(C4xD5).82D6 = C2xD5xDic6 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | | (C4xD5).82D6 | 480,1073 |
(C4xD5).83D6 = C40.54D6 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).83D6 | 480,341 |
(C4xD5).84D6 = C40.34D6 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).84D6 | 480,342 |
(C4xD5).85D6 = C2xC20.32D6 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | | (C4xD5).85D6 | 480,369 |
(C4xD5).86D6 = C120:C4 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).86D6 | 480,298 |
(C4xD5).87D6 = D5.D24 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).87D6 | 480,299 |
(C4xD5).88D6 = C40.Dic3 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).88D6 | 480,300 |
(C4xD5).89D6 = C24.1F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | 4 | (C4xD5).89D6 | 480,301 |
(C4xD5).90D6 = C2xC12.F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | | (C4xD5).90D6 | 480,1061 |
(C4xD5).91D6 = C2xC60:C4 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | | (C4xD5).91D6 | 480,1064 |
(C4xD5).92D6 = (C2xC12):6F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).92D6 | 480,1065 |
(C4xD5).93D6 = C8xC3:F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).93D6 | 480,296 |
(C4xD5).94D6 = C24:F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).94D6 | 480,297 |
(C4xD5).95D6 = C2xC60.C4 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 240 | | (C4xD5).95D6 | 480,1060 |
(C4xD5).96D6 = C60.59(C2xC4) | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | 4 | (C4xD5).96D6 | 480,1062 |
(C4xD5).97D6 = C2xC4xC3:F5 | φ: D6/C6 → C2 ⊆ Out C4xD5 | 120 | | (C4xD5).97D6 | 480,1063 |
(C4xD5).98D6 = S3xC8xD5 | φ: trivial image | 120 | 4 | (C4xD5).98D6 | 480,319 |
(C4xD5).99D6 = D5xC8:S3 | φ: trivial image | 120 | 4 | (C4xD5).99D6 | 480,320 |
(C4xD5).100D6 = C2xD5xC3:C8 | φ: trivial image | 240 | | (C4xD5).100D6 | 480,357 |
(C4xD5).101D6 = D5xC4.Dic3 | φ: trivial image | 120 | 4 | (C4xD5).101D6 | 480,358 |