Copied to
clipboard

G = C2×He5⋊C2order 500 = 22·53

Direct product of C2 and He5⋊C2

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He5⋊C2, C523D10, He53C22, (C5×C10)⋊2D5, (C2×He5)⋊2C2, C10.5(C5⋊D5), C5.2(C2×C5⋊D5), SmallGroup(500,33)

Series: Derived Chief Lower central Upper central

C1C5He5 — C2×He5⋊C2
C1C5C52He5He5⋊C2 — C2×He5⋊C2
He5 — C2×He5⋊C2
C1C10

Generators and relations for C2×He5⋊C2
 G = < a,b,c,d,e | a2=b5=c5=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, ebe=b-1c-1, cd=dc, ce=ec, ede=d-1 >

Subgroups: 411 in 75 conjugacy classes, 21 normal (7 characteristic)
C1, C2, C2, C22, C5, C5, D5, C10, C10, D10, C2×C10, C52, C5×D5, C5×C10, D5×C10, He5, He5⋊C2, C2×He5, C2×He5⋊C2
Quotients: C1, C2, C22, D5, D10, C5⋊D5, C2×C5⋊D5, He5⋊C2, C2×He5⋊C2

Smallest permutation representation of C2×He5⋊C2
On 50 points
Generators in S50
(1 10)(2 8)(3 6)(4 9)(5 7)(11 41)(12 42)(13 43)(14 44)(15 45)(16 23)(17 24)(18 25)(19 21)(20 22)(26 34)(27 35)(28 31)(29 32)(30 33)(36 46)(37 47)(38 48)(39 49)(40 50)
(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)
(1 2 5 4 3)(6 10 8 7 9)(11 15 14 13 12)(16 17 18 19 20)(21 22 23 24 25)(26 29 27 30 28)(31 34 32 35 33)(36 38 40 37 39)(41 45 44 43 42)(46 48 50 47 49)
(1 24 30 48 41)(2 25 28 50 45)(3 23 27 46 42)(4 22 29 49 43)(5 21 26 47 44)(6 16 35 36 12)(7 19 34 37 14)(8 18 31 40 15)(9 20 32 39 13)(10 17 33 38 11)
(1 11)(2 15)(3 12)(4 13)(5 14)(6 42)(7 44)(8 45)(9 43)(10 41)(16 46)(17 48)(18 50)(19 47)(20 49)(21 37)(22 39)(23 36)(24 38)(25 40)(26 34)(27 35)(28 31)(29 32)(30 33)

G:=sub<Sym(50)| (1,10)(2,8)(3,6)(4,9)(5,7)(11,41)(12,42)(13,43)(14,44)(15,45)(16,23)(17,24)(18,25)(19,21)(20,22)(26,34)(27,35)(28,31)(29,32)(30,33)(36,46)(37,47)(38,48)(39,49)(40,50), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,2,5,4,3)(6,10,8,7,9)(11,15,14,13,12)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28)(31,34,32,35,33)(36,38,40,37,39)(41,45,44,43,42)(46,48,50,47,49), (1,24,30,48,41)(2,25,28,50,45)(3,23,27,46,42)(4,22,29,49,43)(5,21,26,47,44)(6,16,35,36,12)(7,19,34,37,14)(8,18,31,40,15)(9,20,32,39,13)(10,17,33,38,11), (1,11)(2,15)(3,12)(4,13)(5,14)(6,42)(7,44)(8,45)(9,43)(10,41)(16,46)(17,48)(18,50)(19,47)(20,49)(21,37)(22,39)(23,36)(24,38)(25,40)(26,34)(27,35)(28,31)(29,32)(30,33)>;

G:=Group( (1,10)(2,8)(3,6)(4,9)(5,7)(11,41)(12,42)(13,43)(14,44)(15,45)(16,23)(17,24)(18,25)(19,21)(20,22)(26,34)(27,35)(28,31)(29,32)(30,33)(36,46)(37,47)(38,48)(39,49)(40,50), (11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,2,5,4,3)(6,10,8,7,9)(11,15,14,13,12)(16,17,18,19,20)(21,22,23,24,25)(26,29,27,30,28)(31,34,32,35,33)(36,38,40,37,39)(41,45,44,43,42)(46,48,50,47,49), (1,24,30,48,41)(2,25,28,50,45)(3,23,27,46,42)(4,22,29,49,43)(5,21,26,47,44)(6,16,35,36,12)(7,19,34,37,14)(8,18,31,40,15)(9,20,32,39,13)(10,17,33,38,11), (1,11)(2,15)(3,12)(4,13)(5,14)(6,42)(7,44)(8,45)(9,43)(10,41)(16,46)(17,48)(18,50)(19,47)(20,49)(21,37)(22,39)(23,36)(24,38)(25,40)(26,34)(27,35)(28,31)(29,32)(30,33) );

G=PermutationGroup([[(1,10),(2,8),(3,6),(4,9),(5,7),(11,41),(12,42),(13,43),(14,44),(15,45),(16,23),(17,24),(18,25),(19,21),(20,22),(26,34),(27,35),(28,31),(29,32),(30,33),(36,46),(37,47),(38,48),(39,49),(40,50)], [(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50)], [(1,2,5,4,3),(6,10,8,7,9),(11,15,14,13,12),(16,17,18,19,20),(21,22,23,24,25),(26,29,27,30,28),(31,34,32,35,33),(36,38,40,37,39),(41,45,44,43,42),(46,48,50,47,49)], [(1,24,30,48,41),(2,25,28,50,45),(3,23,27,46,42),(4,22,29,49,43),(5,21,26,47,44),(6,16,35,36,12),(7,19,34,37,14),(8,18,31,40,15),(9,20,32,39,13),(10,17,33,38,11)], [(1,11),(2,15),(3,12),(4,13),(5,14),(6,42),(7,44),(8,45),(9,43),(10,41),(16,46),(17,48),(18,50),(19,47),(20,49),(21,37),(22,39),(23,36),(24,38),(25,40),(26,34),(27,35),(28,31),(29,32),(30,33)]])

44 conjugacy classes

class 1 2A2B2C5A5B5C5D5E···5P10A10B10C10D10E···10P10Q···10X
order122255555···51010101010···1010···10
size112525111110···10111110···1025···25

44 irreducible representations

dim1112255
type+++++
imageC1C2C2D5D10He5⋊C2C2×He5⋊C2
kernelC2×He5⋊C2He5⋊C2C2×He5C5×C10C52C2C1
# reps121121288

Matrix representation of C2×He5⋊C2 in GL5(𝔽11)

100000
010000
001000
000100
000010
,
90000
03000
00100
00040
00005
,
30000
03000
00300
00030
00003
,
01000
00100
00010
00001
10000
,
100000
000010
000100
001000
010000

G:=sub<GL(5,GF(11))| [10,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,10],[9,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,5],[3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0],[10,0,0,0,0,0,0,0,0,10,0,0,0,10,0,0,0,10,0,0,0,10,0,0,0] >;

C2×He5⋊C2 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_5\rtimes C_2
% in TeX

G:=Group("C2xHe5:C2");
// GroupNames label

G:=SmallGroup(500,33);
// by ID

G=gap.SmallGroup(500,33);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,242,1603,613]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^5=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,e*b*e=b^-1*c^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽