Copied to
clipboard

G = S3×D41order 492 = 22·3·41

Direct product of S3 and D41

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D41, C411D6, C31D82, D123⋊C2, C123⋊C22, (S3×C41)⋊C2, (C3×D41)⋊C2, SmallGroup(492,7)

Series: Derived Chief Lower central Upper central

C1C123 — S3×D41
C1C41C123C3×D41 — S3×D41
C123 — S3×D41
C1

Generators and relations for S3×D41
 G = < a,b,c,d | a3=b2=c41=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
41C2
123C2
123C22
41C6
41S3
3C82
3D41
41D6
3D82

Smallest permutation representation of S3×D41
On 123 points
Generators in S123
(1 53 123)(2 54 83)(3 55 84)(4 56 85)(5 57 86)(6 58 87)(7 59 88)(8 60 89)(9 61 90)(10 62 91)(11 63 92)(12 64 93)(13 65 94)(14 66 95)(15 67 96)(16 68 97)(17 69 98)(18 70 99)(19 71 100)(20 72 101)(21 73 102)(22 74 103)(23 75 104)(24 76 105)(25 77 106)(26 78 107)(27 79 108)(28 80 109)(29 81 110)(30 82 111)(31 42 112)(32 43 113)(33 44 114)(34 45 115)(35 46 116)(36 47 117)(37 48 118)(38 49 119)(39 50 120)(40 51 121)(41 52 122)
(42 112)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 83)(55 84)(56 85)(57 86)(58 87)(59 88)(60 89)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 99)(71 100)(72 101)(73 102)(74 103)(75 104)(76 105)(77 106)(78 107)(79 108)(80 109)(81 110)(82 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)(83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 54)(52 53)(64 82)(65 81)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)(83 121)(84 120)(85 119)(86 118)(87 117)(88 116)(89 115)(90 114)(91 113)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)(122 123)

G:=sub<Sym(123)| (1,53,123)(2,54,83)(3,55,84)(4,56,85)(5,57,86)(6,58,87)(7,59,88)(8,60,89)(9,61,90)(10,62,91)(11,63,92)(12,64,93)(13,65,94)(14,66,95)(15,67,96)(16,68,97)(17,69,98)(18,70,99)(19,71,100)(20,72,101)(21,73,102)(22,74,103)(23,75,104)(24,76,105)(25,77,106)(26,78,107)(27,79,108)(28,80,109)(29,81,110)(30,82,111)(31,42,112)(32,43,113)(33,44,114)(34,45,115)(35,46,116)(36,47,117)(37,48,118)(38,49,119)(39,50,120)(40,51,121)(41,52,122), (42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105)(77,106)(78,107)(79,108)(80,109)(81,110)(82,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(83,121)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)(122,123)>;

G:=Group( (1,53,123)(2,54,83)(3,55,84)(4,56,85)(5,57,86)(6,58,87)(7,59,88)(8,60,89)(9,61,90)(10,62,91)(11,63,92)(12,64,93)(13,65,94)(14,66,95)(15,67,96)(16,68,97)(17,69,98)(18,70,99)(19,71,100)(20,72,101)(21,73,102)(22,74,103)(23,75,104)(24,76,105)(25,77,106)(26,78,107)(27,79,108)(28,80,109)(29,81,110)(30,82,111)(31,42,112)(32,43,113)(33,44,114)(34,45,115)(35,46,116)(36,47,117)(37,48,118)(38,49,119)(39,50,120)(40,51,121)(41,52,122), (42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,83)(55,84)(56,85)(57,86)(58,87)(59,88)(60,89)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105)(77,106)(78,107)(79,108)(80,109)(81,110)(82,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)(52,53)(64,82)(65,81)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74)(83,121)(84,120)(85,119)(86,118)(87,117)(88,116)(89,115)(90,114)(91,113)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)(122,123) );

G=PermutationGroup([[(1,53,123),(2,54,83),(3,55,84),(4,56,85),(5,57,86),(6,58,87),(7,59,88),(8,60,89),(9,61,90),(10,62,91),(11,63,92),(12,64,93),(13,65,94),(14,66,95),(15,67,96),(16,68,97),(17,69,98),(18,70,99),(19,71,100),(20,72,101),(21,73,102),(22,74,103),(23,75,104),(24,76,105),(25,77,106),(26,78,107),(27,79,108),(28,80,109),(29,81,110),(30,82,111),(31,42,112),(32,43,113),(33,44,114),(34,45,115),(35,46,116),(36,47,117),(37,48,118),(38,49,119),(39,50,120),(40,51,121),(41,52,122)], [(42,112),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,83),(55,84),(56,85),(57,86),(58,87),(59,88),(60,89),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,99),(71,100),(72,101),(73,102),(74,103),(75,104),(76,105),(77,106),(78,107),(79,108),(80,109),(81,110),(82,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82),(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,54),(52,53),(64,82),(65,81),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74),(83,121),(84,120),(85,119),(86,118),(87,117),(88,116),(89,115),(90,114),(91,113),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103),(122,123)]])

66 conjugacy classes

class 1 2A2B2C 3  6 41A···41T82A···82T123A···123T
order12223641···4182···82123···123
size13411232822···26···64···4

66 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2S3D6D41D82S3×D41
kernelS3×D41S3×C41C3×D41D123D41C41S3C3C1
# reps111111202020

Matrix representation of S3×D41 in GL4(𝔽739) generated by

1000
0100
00163
00563737
,
1000
0100
00738676
0001
,
258100
34626200
0010
0001
,
12873400
2561100
0010
0001
G:=sub<GL(4,GF(739))| [1,0,0,0,0,1,0,0,0,0,1,563,0,0,63,737],[1,0,0,0,0,1,0,0,0,0,738,0,0,0,676,1],[258,346,0,0,1,262,0,0,0,0,1,0,0,0,0,1],[128,25,0,0,734,611,0,0,0,0,1,0,0,0,0,1] >;

S3×D41 in GAP, Magma, Sage, TeX

S_3\times D_{41}
% in TeX

G:=Group("S3xD41");
// GroupNames label

G:=SmallGroup(492,7);
// by ID

G=gap.SmallGroup(492,7);
# by ID

G:=PCGroup([4,-2,-2,-3,-41,54,7683]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^41=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D41 in TeX

׿
×
𝔽