Copied to
clipboard

G = C4○D4⋊D4order 128 = 27

1st semidirect product of C4○D4 and D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4○D41D4, (C2×D4)⋊20D4, D4.43(C2×D4), C2.6(D4○D8), (C22×D8)⋊7C2, Q8.43(C2×D4), D4⋊D415C2, C22⋊D813C2, C4.39C22≀C2, (C2×D8)⋊38C22, C4⋊C4.10C23, C4⋊D41C22, C22⋊C87C22, (C2×Q8).229D4, (C22×C8)⋊8C22, C4.45(C22×D4), (C2×C4).227C24, (C2×C8).129C23, (C2×SD16)⋊6C22, (C2×D4).29C23, C23.231(C2×D4), D4⋊C412C22, C22.29C243C2, C42⋊C27C22, Q8⋊C466C22, C22.19C22≀C2, C23.37D44C2, C23.24D46C2, (C22×D4)⋊18C22, (C2×M4(2))⋊4C22, (C2×2+ 1+4)⋊1C2, (C2×Q8).354C23, (C22×C4).275C23, C22.487(C22×D4), (C2×C8⋊C22)⋊8C2, (C2×C4).454(C2×D4), (C2×C4○D4)⋊3C22, (C22×C8)⋊C23C2, C2.45(C2×C22≀C2), SmallGroup(128,1740)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4○D4⋊D4
C1C2C22C2×C4C22×C4C2×C4○D4C2×2+ 1+4 — C4○D4⋊D4
C1C2C2×C4 — C4○D4⋊D4
C1C22C2×C4○D4 — C4○D4⋊D4
C1C2C2C2×C4 — C4○D4⋊D4

Generators and relations for C4○D4⋊D4
 G = < a,b,c,d,e | a4=c2=d4=e2=1, b2=a2, ab=ba, ac=ca, ad=da, eae=a-1, cbc=dbd-1=ebe=a2b, dcd-1=ece=bc, ede=d-1 >

Subgroups: 908 in 392 conjugacy classes, 108 normal (28 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C22×C8, C2×M4(2), C2×D8, C2×D8, C2×SD16, C8⋊C22, C22×D4, C22×D4, C22×D4, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, (C22×C8)⋊C2, C23.24D4, C23.37D4, C22⋊D8, D4⋊D4, C22.29C24, C22×D8, C2×C8⋊C22, C2×2+ 1+4, C4○D4⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, D4○D8, C4○D4⋊D4

Smallest permutation representation of C4○D4⋊D4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 3 11)(2 10 4 12)(5 21 7 23)(6 22 8 24)(13 17 15 19)(14 18 16 20)(25 32 27 30)(26 29 28 31)
(1 24)(2 21)(3 22)(4 23)(5 10)(6 11)(7 12)(8 9)(13 30)(14 31)(15 32)(16 29)(17 27)(18 28)(19 25)(20 26)
(1 15 24 25)(2 16 21 26)(3 13 22 27)(4 14 23 28)(5 29 12 20)(6 30 9 17)(7 31 10 18)(8 32 11 19)
(1 26)(2 25)(3 28)(4 27)(5 19)(6 18)(7 17)(8 20)(9 31)(10 30)(11 29)(12 32)(13 23)(14 22)(15 21)(16 24)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,3,11)(2,10,4,12)(5,21,7,23)(6,22,8,24)(13,17,15,19)(14,18,16,20)(25,32,27,30)(26,29,28,31), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,15,24,25)(2,16,21,26)(3,13,22,27)(4,14,23,28)(5,29,12,20)(6,30,9,17)(7,31,10,18)(8,32,11,19), (1,26)(2,25)(3,28)(4,27)(5,19)(6,18)(7,17)(8,20)(9,31)(10,30)(11,29)(12,32)(13,23)(14,22)(15,21)(16,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,3,11),(2,10,4,12),(5,21,7,23),(6,22,8,24),(13,17,15,19),(14,18,16,20),(25,32,27,30),(26,29,28,31)], [(1,24),(2,21),(3,22),(4,23),(5,10),(6,11),(7,12),(8,9),(13,30),(14,31),(15,32),(16,29),(17,27),(18,28),(19,25),(20,26)], [(1,15,24,25),(2,16,21,26),(3,13,22,27),(4,14,23,28),(5,29,12,20),(6,30,9,17),(7,31,10,18),(8,32,11,19)], [(1,26),(2,25),(3,28),(4,27),(5,19),(6,18),(7,17),(8,20),(9,31),(10,30),(11,29),(12,32),(13,23),(14,22),(15,21),(16,24)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F···2M2N2O4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F
order1222222···2224444444444888888
size1111224···4882222444488444488

32 irreducible representations

dim11111111112224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4D4○D8
kernelC4○D4⋊D4(C22×C8)⋊C2C23.24D4C23.37D4C22⋊D8D4⋊D4C22.29C24C22×D8C2×C8⋊C22C2×2+ 1+4C2×D4C2×Q8C4○D4C2
# reps11114411117144

Matrix representation of C4○D4⋊D4 in GL6(𝔽17)

100000
010000
000001
0000160
000100
0016000
,
100000
010000
0001600
001000
0000016
000010
,
100000
010000
000100
001000
0000016
0000160
,
0150000
900000
003300
0031400
00001414
0000143
,
020000
900000
0000143
000033
0014300
003300

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,9,0,0,0,0,15,0,0,0,0,0,0,0,3,3,0,0,0,0,3,14,0,0,0,0,0,0,14,14,0,0,0,0,14,3],[0,9,0,0,0,0,2,0,0,0,0,0,0,0,0,0,14,3,0,0,0,0,3,3,0,0,14,3,0,0,0,0,3,3,0,0] >;

C4○D4⋊D4 in GAP, Magma, Sage, TeX

C_4\circ D_4\rtimes D_4
% in TeX

G:=Group("C4oD4:D4");
// GroupNames label

G:=SmallGroup(128,1740);
// by ID

G=gap.SmallGroup(128,1740);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,521,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=d^4=e^2=1,b^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c=d*b*d^-1=e*b*e=a^2*b,d*c*d^-1=e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽