extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×D4) = C12⋊2Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.1(C2xD4) | 96,76 |
C6.2(C2×D4) = C4×D12 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.2(C2xD4) | 96,80 |
C6.3(C2×D4) = C4⋊D12 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.3(C2xD4) | 96,81 |
C6.4(C2×D4) = C42⋊7S3 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.4(C2xD4) | 96,82 |
C6.5(C2×D4) = D6⋊D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 24 | | C6.5(C2xD4) | 96,89 |
C6.6(C2×D4) = C23.21D6 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.6(C2xD4) | 96,93 |
C6.7(C2×D4) = C12⋊D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.7(C2xD4) | 96,102 |
C6.8(C2×D4) = C4.D12 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.8(C2xD4) | 96,104 |
C6.9(C2×D4) = C2×C24⋊C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.9(C2xD4) | 96,109 |
C6.10(C2×D4) = C2×D24 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | | C6.10(C2xD4) | 96,110 |
C6.11(C2×D4) = C4○D24 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | 2 | C6.11(C2xD4) | 96,111 |
C6.12(C2×D4) = C2×Dic12 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.12(C2xD4) | 96,112 |
C6.13(C2×D4) = C8⋊D6 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 24 | 4+ | C6.13(C2xD4) | 96,115 |
C6.14(C2×D4) = C8.D6 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 48 | 4- | C6.14(C2xD4) | 96,116 |
C6.15(C2×D4) = C2×C4⋊Dic3 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C6 | 96 | | C6.15(C2xD4) | 96,132 |
C6.16(C2×D4) = Dic3.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.16(C2xD4) | 96,85 |
C6.17(C2×D4) = S3×C22⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 24 | | C6.17(C2xD4) | 96,87 |
C6.18(C2×D4) = Dic3⋊4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.18(C2xD4) | 96,88 |
C6.19(C2×D4) = C23.9D6 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.19(C2xD4) | 96,90 |
C6.20(C2×D4) = Dic3⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.20(C2xD4) | 96,91 |
C6.21(C2×D4) = C23.11D6 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.21(C2xD4) | 96,92 |
C6.22(C2×D4) = C12⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 96 | | C6.22(C2xD4) | 96,95 |
C6.23(C2×D4) = S3×C4⋊C4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.23(C2xD4) | 96,98 |
C6.24(C2×D4) = Dic3⋊5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.24(C2xD4) | 96,100 |
C6.25(C2×D4) = D6.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.25(C2xD4) | 96,101 |
C6.26(C2×D4) = D6⋊Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.26(C2xD4) | 96,103 |
C6.27(C2×D4) = S3×D8 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 24 | 4+ | C6.27(C2xD4) | 96,117 |
C6.28(C2×D4) = D8⋊S3 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 24 | 4 | C6.28(C2xD4) | 96,118 |
C6.29(C2×D4) = D8⋊3S3 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4- | C6.29(C2xD4) | 96,119 |
C6.30(C2×D4) = S3×SD16 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 24 | 4 | C6.30(C2xD4) | 96,120 |
C6.31(C2×D4) = Q8⋊3D6 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 24 | 4+ | C6.31(C2xD4) | 96,121 |
C6.32(C2×D4) = D4.D6 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4- | C6.32(C2xD4) | 96,122 |
C6.33(C2×D4) = Q8.7D6 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.33(C2xD4) | 96,123 |
C6.34(C2×D4) = S3×Q16 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4- | C6.34(C2xD4) | 96,124 |
C6.35(C2×D4) = Q16⋊S3 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.35(C2xD4) | 96,125 |
C6.36(C2×D4) = D24⋊C2 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.36(C2xD4) | 96,126 |
C6.37(C2×D4) = D4×Dic3 | φ: C2×D4/D4 → C2 ⊆ Aut C6 | 48 | | C6.37(C2xD4) | 96,141 |
C6.38(C2×D4) = C2×Dic3⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 96 | | C6.38(C2xD4) | 96,130 |
C6.39(C2×D4) = C12.48D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.39(C2xD4) | 96,131 |
C6.40(C2×D4) = C2×D6⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.40(C2xD4) | 96,134 |
C6.41(C2×D4) = C4×C3⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.41(C2xD4) | 96,135 |
C6.42(C2×D4) = C23.28D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.42(C2xD4) | 96,136 |
C6.43(C2×D4) = C12⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.43(C2xD4) | 96,137 |
C6.44(C2×D4) = C2×D4⋊S3 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.44(C2xD4) | 96,138 |
C6.45(C2×D4) = D12⋊6C22 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 24 | 4 | C6.45(C2xD4) | 96,139 |
C6.46(C2×D4) = C2×D4.S3 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.46(C2xD4) | 96,140 |
C6.47(C2×D4) = C23.23D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.47(C2xD4) | 96,142 |
C6.48(C2×D4) = C23.12D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.48(C2xD4) | 96,143 |
C6.49(C2×D4) = C23⋊2D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 24 | | C6.49(C2xD4) | 96,144 |
C6.50(C2×D4) = D6⋊3D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.50(C2xD4) | 96,145 |
C6.51(C2×D4) = C23.14D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.51(C2xD4) | 96,146 |
C6.52(C2×D4) = C12⋊3D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.52(C2xD4) | 96,147 |
C6.53(C2×D4) = C2×Q8⋊2S3 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.53(C2xD4) | 96,148 |
C6.54(C2×D4) = Q8.11D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | 4 | C6.54(C2xD4) | 96,149 |
C6.55(C2×D4) = C2×C3⋊Q16 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 96 | | C6.55(C2xD4) | 96,150 |
C6.56(C2×D4) = Dic3⋊Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 96 | | C6.56(C2xD4) | 96,151 |
C6.57(C2×D4) = D6⋊3Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.57(C2xD4) | 96,153 |
C6.58(C2×D4) = C12.23D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.58(C2xD4) | 96,154 |
C6.59(C2×D4) = D4⋊D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 24 | 4+ | C6.59(C2xD4) | 96,156 |
C6.60(C2×D4) = Q8.13D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | 4 | C6.60(C2xD4) | 96,157 |
C6.61(C2×D4) = Q8.14D6 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | 4- | C6.61(C2xD4) | 96,158 |
C6.62(C2×D4) = C2×C6.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 48 | | C6.62(C2xD4) | 96,159 |
C6.63(C2×D4) = C24⋊4S3 | φ: C2×D4/C23 → C2 ⊆ Aut C6 | 24 | | C6.63(C2xD4) | 96,160 |
C6.64(C2×D4) = C6×C22⋊C4 | central extension (φ=1) | 48 | | C6.64(C2xD4) | 96,162 |
C6.65(C2×D4) = C6×C4⋊C4 | central extension (φ=1) | 96 | | C6.65(C2xD4) | 96,163 |
C6.66(C2×D4) = D4×C12 | central extension (φ=1) | 48 | | C6.66(C2xD4) | 96,165 |
C6.67(C2×D4) = C3×C22≀C2 | central extension (φ=1) | 24 | | C6.67(C2xD4) | 96,167 |
C6.68(C2×D4) = C3×C4⋊D4 | central extension (φ=1) | 48 | | C6.68(C2xD4) | 96,168 |
C6.69(C2×D4) = C3×C22⋊Q8 | central extension (φ=1) | 48 | | C6.69(C2xD4) | 96,169 |
C6.70(C2×D4) = C3×C22.D4 | central extension (φ=1) | 48 | | C6.70(C2xD4) | 96,170 |
C6.71(C2×D4) = C3×C4.4D4 | central extension (φ=1) | 48 | | C6.71(C2xD4) | 96,171 |
C6.72(C2×D4) = C3×C4⋊1D4 | central extension (φ=1) | 48 | | C6.72(C2xD4) | 96,174 |
C6.73(C2×D4) = C3×C4⋊Q8 | central extension (φ=1) | 96 | | C6.73(C2xD4) | 96,175 |
C6.74(C2×D4) = C6×D8 | central extension (φ=1) | 48 | | C6.74(C2xD4) | 96,179 |
C6.75(C2×D4) = C6×SD16 | central extension (φ=1) | 48 | | C6.75(C2xD4) | 96,180 |
C6.76(C2×D4) = C6×Q16 | central extension (φ=1) | 96 | | C6.76(C2xD4) | 96,181 |
C6.77(C2×D4) = C3×C4○D8 | central extension (φ=1) | 48 | 2 | C6.77(C2xD4) | 96,182 |
C6.78(C2×D4) = C3×C8⋊C22 | central extension (φ=1) | 24 | 4 | C6.78(C2xD4) | 96,183 |
C6.79(C2×D4) = C3×C8.C22 | central extension (φ=1) | 48 | 4 | C6.79(C2xD4) | 96,184 |