Extensions 1→N→G→Q→1 with N=C2×C8 and Q=S3

Direct product G=N×Q with N=C2×C8 and Q=S3
dρLabelID
S3×C2×C848S3xC2xC896,106

Semidirect products G=N:Q with N=C2×C8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1S3 = D6⋊C8φ: S3/C3C2 ⊆ Aut C2×C848(C2xC8):1S396,27
(C2×C8)⋊2S3 = C2.D24φ: S3/C3C2 ⊆ Aut C2×C848(C2xC8):2S396,28
(C2×C8)⋊3S3 = C2×D24φ: S3/C3C2 ⊆ Aut C2×C848(C2xC8):3S396,110
(C2×C8)⋊4S3 = C4○D24φ: S3/C3C2 ⊆ Aut C2×C8482(C2xC8):4S396,111
(C2×C8)⋊5S3 = C2×C24⋊C2φ: S3/C3C2 ⊆ Aut C2×C848(C2xC8):5S396,109
(C2×C8)⋊6S3 = C2×C8⋊S3φ: S3/C3C2 ⊆ Aut C2×C848(C2xC8):6S396,107
(C2×C8)⋊7S3 = C8○D12φ: S3/C3C2 ⊆ Aut C2×C8482(C2xC8):7S396,108

Non-split extensions G=N.Q with N=C2×C8 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C8).1S3 = Dic3⋊C8φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).1S396,21
(C2×C8).2S3 = C2.Dic12φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).2S396,23
(C2×C8).3S3 = C241C4φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).3S396,25
(C2×C8).4S3 = C2×Dic12φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).4S396,112
(C2×C8).5S3 = C24.C4φ: S3/C3C2 ⊆ Aut C2×C8482(C2xC8).5S396,26
(C2×C8).6S3 = C8⋊Dic3φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).6S396,24
(C2×C8).7S3 = C12.C8φ: S3/C3C2 ⊆ Aut C2×C8482(C2xC8).7S396,19
(C2×C8).8S3 = C24⋊C4φ: S3/C3C2 ⊆ Aut C2×C896(C2xC8).8S396,22
(C2×C8).9S3 = C2×C3⋊C16central extension (φ=1)96(C2xC8).9S396,18
(C2×C8).10S3 = C8×Dic3central extension (φ=1)96(C2xC8).10S396,20

׿
×
𝔽