extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1S3 = Dic3⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).1S3 | 96,21 |
(C2×C8).2S3 = C2.Dic12 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).2S3 | 96,23 |
(C2×C8).3S3 = C24⋊1C4 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).3S3 | 96,25 |
(C2×C8).4S3 = C2×Dic12 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).4S3 | 96,112 |
(C2×C8).5S3 = C24.C4 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 48 | 2 | (C2xC8).5S3 | 96,26 |
(C2×C8).6S3 = C8⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).6S3 | 96,24 |
(C2×C8).7S3 = C12.C8 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 48 | 2 | (C2xC8).7S3 | 96,19 |
(C2×C8).8S3 = C24⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C8 | 96 | | (C2xC8).8S3 | 96,22 |
(C2×C8).9S3 = C2×C3⋊C16 | central extension (φ=1) | 96 | | (C2xC8).9S3 | 96,18 |
(C2×C8).10S3 = C8×Dic3 | central extension (φ=1) | 96 | | (C2xC8).10S3 | 96,20 |