Extensions 1→N→G→Q→1 with N=C4 and Q=D12

Direct product G=N×Q with N=C4 and Q=D12
dρLabelID
C4×D1248C4xD1296,80

Semidirect products G=N:Q with N=C4 and Q=D12
extensionφ:Q→Aut NdρLabelID
C41D12 = C4⋊D12φ: D12/C12C2 ⊆ Aut C448C4:1D1296,81
C42D12 = C12⋊D4φ: D12/D6C2 ⊆ Aut C448C4:2D1296,102

Non-split extensions G=N.Q with N=C4 and Q=D12
extensionφ:Q→Aut NdρLabelID
C4.1D12 = D48φ: D12/C12C2 ⊆ Aut C4482+C4.1D1296,6
C4.2D12 = C48⋊C2φ: D12/C12C2 ⊆ Aut C4482C4.2D1296,7
C4.3D12 = Dic24φ: D12/C12C2 ⊆ Aut C4962-C4.3D1296,8
C4.4D12 = C122Q8φ: D12/C12C2 ⊆ Aut C496C4.4D1296,76
C4.5D12 = C427S3φ: D12/C12C2 ⊆ Aut C448C4.5D1296,82
C4.6D12 = C2×C24⋊C2φ: D12/C12C2 ⊆ Aut C448C4.6D1296,109
C4.7D12 = C2×D24φ: D12/C12C2 ⊆ Aut C448C4.7D1296,110
C4.8D12 = C2×Dic12φ: D12/C12C2 ⊆ Aut C496C4.8D1296,112
C4.9D12 = C6.D8φ: D12/D6C2 ⊆ Aut C448C4.9D1296,16
C4.10D12 = C6.SD16φ: D12/D6C2 ⊆ Aut C496C4.10D1296,17
C4.11D12 = C12.46D4φ: D12/D6C2 ⊆ Aut C4244+C4.11D1296,30
C4.12D12 = C12.47D4φ: D12/D6C2 ⊆ Aut C4484-C4.12D1296,31
C4.13D12 = C4.D12φ: D12/D6C2 ⊆ Aut C448C4.13D1296,104
C4.14D12 = C8⋊D6φ: D12/D6C2 ⊆ Aut C4244+C4.14D1296,115
C4.15D12 = C8.D6φ: D12/D6C2 ⊆ Aut C4484-C4.15D1296,116
C4.16D12 = C12⋊C8central extension (φ=1)96C4.16D1296,11
C4.17D12 = C424S3central extension (φ=1)242C4.17D1296,12
C4.18D12 = C24.C4central extension (φ=1)482C4.18D1296,26
C4.19D12 = D6⋊C8central extension (φ=1)48C4.19D1296,27
C4.20D12 = C4○D24central extension (φ=1)482C4.20D1296,111

׿
×
𝔽