Aliases: Q8⋊C9, C6.1A4, C3.SL2(𝔽3), (C3×Q8).C3, C2.(C3.A4), SmallGroup(72,3)
Series: Derived ►Chief ►Lower central ►Upper central
Q8 — Q8⋊C9 |
Generators and relations for Q8⋊C9
G = < a,b,c | a4=c9=1, b2=a2, bab-1=a-1, cac-1=b, cbc-1=ab >
Character table of Q8⋊C9
class | 1 | 2 | 3A | 3B | 4 | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 1 | 1 | 1 | 6 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ97 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ3 | ζ32 | ζ97 | ζ94 | ζ92 | ζ9 | ζ95 | ζ98 | linear of order 9 |
ρ5 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ92 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ32 | ζ3 | ζ92 | ζ95 | ζ97 | ζ98 | ζ94 | ζ9 | linear of order 9 |
ρ6 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ95 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ32 | ζ3 | ζ95 | ζ98 | ζ94 | ζ92 | ζ9 | ζ97 | linear of order 9 |
ρ7 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ9 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ3 | ζ32 | ζ9 | ζ97 | ζ98 | ζ94 | ζ92 | ζ95 | linear of order 9 |
ρ8 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ98 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ32 | ζ3 | ζ98 | ζ92 | ζ9 | ζ95 | ζ97 | ζ94 | linear of order 9 |
ρ9 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ94 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ3 | ζ32 | ζ94 | ζ9 | ζ95 | ζ97 | ζ98 | ζ92 | linear of order 9 |
ρ10 | 2 | -2 | 2 | 2 | 0 | -2 | -2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ11 | 2 | -2 | 2 | 2 | 0 | -2 | -2 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | complex lifted from SL2(𝔽3) |
ρ12 | 2 | -2 | 2 | 2 | 0 | -2 | -2 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | complex lifted from SL2(𝔽3) |
ρ13 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 1+√-3 | 1-√-3 | -ζ92 | -ζ97 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | 0 | 0 | ζ92 | ζ95 | ζ97 | ζ98 | ζ94 | ζ9 | complex faithful |
ρ14 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 1-√-3 | 1+√-3 | -ζ94 | -ζ95 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | 0 | 0 | ζ94 | ζ9 | ζ95 | ζ97 | ζ98 | ζ92 | complex faithful |
ρ15 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 1+√-3 | 1-√-3 | -ζ95 | -ζ94 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | 0 | 0 | ζ95 | ζ98 | ζ94 | ζ92 | ζ9 | ζ97 | complex faithful |
ρ16 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 1+√-3 | 1-√-3 | -ζ98 | -ζ9 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | 0 | 0 | ζ98 | ζ92 | ζ9 | ζ95 | ζ97 | ζ94 | complex faithful |
ρ17 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 1-√-3 | 1+√-3 | -ζ9 | -ζ98 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | 0 | 0 | ζ9 | ζ97 | ζ98 | ζ94 | ζ92 | ζ95 | complex faithful |
ρ18 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 1-√-3 | 1+√-3 | -ζ97 | -ζ92 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | 0 | 0 | ζ97 | ζ94 | ζ92 | ζ9 | ζ95 | ζ98 | complex faithful |
ρ19 | 3 | 3 | 3 | 3 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ21 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
(1 50 22 28)(2 56 23 44)(3 15 24 66)(4 53 25 31)(5 59 26 38)(6 18 27 69)(7 47 19 34)(8 62 20 41)(9 12 21 72)(10 61 70 40)(11 35 71 48)(13 55 64 43)(14 29 65 51)(16 58 67 37)(17 32 68 54)(30 57 52 45)(33 60 46 39)(36 63 49 42)
(1 55 22 43)(2 14 23 65)(3 52 24 30)(4 58 25 37)(5 17 26 68)(6 46 27 33)(7 61 19 40)(8 11 20 71)(9 49 21 36)(10 34 70 47)(12 63 72 42)(13 28 64 50)(15 57 66 45)(16 31 67 53)(18 60 69 39)(29 56 51 44)(32 59 54 38)(35 62 48 41)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,50,22,28)(2,56,23,44)(3,15,24,66)(4,53,25,31)(5,59,26,38)(6,18,27,69)(7,47,19,34)(8,62,20,41)(9,12,21,72)(10,61,70,40)(11,35,71,48)(13,55,64,43)(14,29,65,51)(16,58,67,37)(17,32,68,54)(30,57,52,45)(33,60,46,39)(36,63,49,42), (1,55,22,43)(2,14,23,65)(3,52,24,30)(4,58,25,37)(5,17,26,68)(6,46,27,33)(7,61,19,40)(8,11,20,71)(9,49,21,36)(10,34,70,47)(12,63,72,42)(13,28,64,50)(15,57,66,45)(16,31,67,53)(18,60,69,39)(29,56,51,44)(32,59,54,38)(35,62,48,41), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,50,22,28)(2,56,23,44)(3,15,24,66)(4,53,25,31)(5,59,26,38)(6,18,27,69)(7,47,19,34)(8,62,20,41)(9,12,21,72)(10,61,70,40)(11,35,71,48)(13,55,64,43)(14,29,65,51)(16,58,67,37)(17,32,68,54)(30,57,52,45)(33,60,46,39)(36,63,49,42), (1,55,22,43)(2,14,23,65)(3,52,24,30)(4,58,25,37)(5,17,26,68)(6,46,27,33)(7,61,19,40)(8,11,20,71)(9,49,21,36)(10,34,70,47)(12,63,72,42)(13,28,64,50)(15,57,66,45)(16,31,67,53)(18,60,69,39)(29,56,51,44)(32,59,54,38)(35,62,48,41), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,50,22,28),(2,56,23,44),(3,15,24,66),(4,53,25,31),(5,59,26,38),(6,18,27,69),(7,47,19,34),(8,62,20,41),(9,12,21,72),(10,61,70,40),(11,35,71,48),(13,55,64,43),(14,29,65,51),(16,58,67,37),(17,32,68,54),(30,57,52,45),(33,60,46,39),(36,63,49,42)], [(1,55,22,43),(2,14,23,65),(3,52,24,30),(4,58,25,37),(5,17,26,68),(6,46,27,33),(7,61,19,40),(8,11,20,71),(9,49,21,36),(10,34,70,47),(12,63,72,42),(13,28,64,50),(15,57,66,45),(16,31,67,53),(18,60,69,39),(29,56,51,44),(32,59,54,38),(35,62,48,41)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)]])
Q8⋊C9 is a maximal subgroup of
Q8.D9 Q8⋊D9 Q8.C18 C9×SL2(𝔽3) C18.A4 Q8⋊3- 1+2 C22⋊(Q8⋊C9) 2+ 1+4⋊2C9
Q8⋊C9 is a maximal quotient of
Q8⋊C27 C2.(C42⋊C9) C22⋊(Q8⋊C9)
Matrix representation of Q8⋊C9 ►in GL2(𝔽19) generated by
8 | 5 |
6 | 11 |
7 | 16 |
4 | 12 |
17 | 9 |
0 | 16 |
G:=sub<GL(2,GF(19))| [8,6,5,11],[7,4,16,12],[17,0,9,16] >;
Q8⋊C9 in GAP, Magma, Sage, TeX
Q_8\rtimes C_9
% in TeX
G:=Group("Q8:C9");
// GroupNames label
G:=SmallGroup(72,3);
// by ID
G=gap.SmallGroup(72,3);
# by ID
G:=PCGroup([5,-3,-3,-2,2,-2,15,272,72,543,133,58]);
// Polycyclic
G:=Group<a,b,c|a^4=c^9=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,c*b*c^-1=a*b>;
// generators/relations
Export
Subgroup lattice of Q8⋊C9 in TeX
Character table of Q8⋊C9 in TeX