Copied to
clipboard

G = C3⋊D15order 90 = 2·32·5

The semidirect product of C3 and D15 acting via D15/C15=C2

metabelian, supersoluble, monomial, A-group

Aliases: C3⋊D15, C151S3, C322D5, C5⋊(C3⋊S3), (C3×C15)⋊1C2, SmallGroup(90,9)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C3⋊D15
C1C5C15C3×C15 — C3⋊D15
C3×C15 — C3⋊D15
C1

Generators and relations for C3⋊D15
 G = < a,b,c | a3=b15=c2=1, ab=ba, cac=a-1, cbc=b-1 >

45C2
15S3
15S3
15S3
15S3
9D5
5C3⋊S3
3D15
3D15
3D15
3D15

Character table of C3⋊D15

 class 123A3B3C3D5A5B15A15B15C15D15E15F15G15H15I15J15K15L15M15N15O15P
 size 1452222222222222222222222
ρ1111111111111111111111111    trivial
ρ21-11111111111111111111111    linear of order 2
ρ320-1-12-122-12222-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ420-12-1-1222-1-1-1-12-1-1-1-12-1-1-1-12    orthogonal lifted from S3
ρ5202-1-1-122-1-1-1-1-1-1-1-1-1-1-12222-1    orthogonal lifted from S3
ρ620-1-1-1222-1-1-1-1-1-12222-1-1-1-1-1-1    orthogonal lifted from S3
ρ7202222-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ8202222-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ920-1-1-12-1+5/2-1-5/2ζ3ζ533ζ52523ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ543ζ554-1-5/2-1+5/2-1+5/2-1-5/232ζ5432ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ52533ζ533ζ5253    orthogonal lifted from D15
ρ1020-1-1-12-1+5/2-1-5/23ζ533ζ5253ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ525332ζ5432ζ554-1-5/2-1+5/2-1+5/2-1-5/23ζ543ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252ζ3ζ533ζ5252    orthogonal lifted from D15
ρ1120-1-12-1-1-5/2-1+5/23ζ543ζ554-1+5/2-1-5/2-1-5/2-1+5/23ζ533ζ52533ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ55432ζ5432ζ554    orthogonal lifted from D15
ρ12202-1-1-1-1+5/2-1-5/2ζ3ζ533ζ5252ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ52533ζ543ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ525232ζ5432ζ554-1-5/2-1+5/2-1+5/2-1-5/23ζ533ζ5253    orthogonal lifted from D15
ρ1320-12-1-1-1+5/2-1-5/2-1-5/2ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253-1+5/2ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253-1+5/2ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253-1-5/2    orthogonal lifted from D15
ρ1420-1-1-12-1-5/2-1+5/232ζ5432ζ5543ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ5252-1+5/2-1-5/2-1-5/2-1+5/23ζ533ζ525332ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ5543ζ543ζ554    orthogonal lifted from D15
ρ1520-1-12-1-1+5/2-1-5/23ζ533ζ5253-1-5/2-1+5/2-1+5/2-1-5/232ζ5432ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ543ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ5252    orthogonal lifted from D15
ρ1620-1-12-1-1-5/2-1+5/232ζ5432ζ554-1+5/2-1-5/2-1-5/2-1+5/2ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ5543ζ533ζ52533ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ554    orthogonal lifted from D15
ρ17202-1-1-1-1+5/2-1-5/23ζ533ζ52533ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ525232ζ5432ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ52533ζ543ζ554-1-5/2-1+5/2-1+5/2-1-5/2ζ3ζ533ζ5252    orthogonal lifted from D15
ρ18202-1-1-1-1-5/2-1+5/23ζ543ζ5543ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ533ζ525332ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554ζ3ζ533ζ5252-1+5/2-1-5/2-1-5/2-1+5/232ζ5432ζ554    orthogonal lifted from D15
ρ1920-12-1-1-1-5/2-1+5/2-1+5/232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554-1-5/232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554-1-5/232ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554-1+5/2    orthogonal lifted from D15
ρ2020-1-1-12-1-5/2-1+5/23ζ543ζ55432ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ5543ζ533ζ5253-1+5/2-1-5/2-1-5/2-1+5/2ζ3ζ533ζ52523ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ55432ζ5432ζ554    orthogonal lifted from D15
ρ2120-12-1-1-1-5/2-1+5/2-1+5/23ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554-1-5/23ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554-1-5/23ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554-1+5/2    orthogonal lifted from D15
ρ22202-1-1-1-1-5/2-1+5/232ζ5432ζ55432ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554ζ3ζ533ζ52523ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ533ζ5253-1+5/2-1-5/2-1-5/2-1+5/23ζ543ζ554    orthogonal lifted from D15
ρ2320-12-1-1-1+5/2-1-5/2-1-5/23ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252-1+5/23ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252-1+5/23ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252-1-5/2    orthogonal lifted from D15
ρ2420-1-12-1-1+5/2-1-5/2ζ3ζ533ζ5252-1-5/2-1+5/2-1+5/2-1-5/23ζ543ζ554ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ525332ζ5432ζ5543ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ533ζ5253    orthogonal lifted from D15

Smallest permutation representation of C3⋊D15
On 45 points
Generators in S45
(1 38 18)(2 39 19)(3 40 20)(4 41 21)(5 42 22)(6 43 23)(7 44 24)(8 45 25)(9 31 26)(10 32 27)(11 33 28)(12 34 29)(13 35 30)(14 36 16)(15 37 17)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 39)(17 38)(18 37)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)

G:=sub<Sym(45)| (1,38,18)(2,39,19)(3,40,20)(4,41,21)(5,42,22)(6,43,23)(7,44,24)(8,45,25)(9,31,26)(10,32,27)(11,33,28)(12,34,29)(13,35,30)(14,36,16)(15,37,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)>;

G:=Group( (1,38,18)(2,39,19)(3,40,20)(4,41,21)(5,42,22)(6,43,23)(7,44,24)(8,45,25)(9,31,26)(10,32,27)(11,33,28)(12,34,29)(13,35,30)(14,36,16)(15,37,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40) );

G=PermutationGroup([[(1,38,18),(2,39,19),(3,40,20),(4,41,21),(5,42,22),(6,43,23),(7,44,24),(8,45,25),(9,31,26),(10,32,27),(11,33,28),(12,34,29),(13,35,30),(14,36,16),(15,37,17)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,39),(17,38),(18,37),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40)]])

C3⋊D15 is a maximal subgroup of
C32⋊F5  D5×C3⋊S3  S3×D15  He3⋊D5  C3⋊D45  C33⋊D5  A4⋊D15  C3⋊D75  C15⋊D15
C3⋊D15 is a maximal quotient of
C3⋊Dic15  C3⋊D45  C32⋊D15  C33⋊D5  A4⋊D15  C3⋊D75  C15⋊D15

Matrix representation of C3⋊D15 in GL4(𝔽31) generated by

19300
281100
0010
0001
,
301800
131300
00288
00129
,
301800
0100
00195
002112
G:=sub<GL(4,GF(31))| [19,28,0,0,3,11,0,0,0,0,1,0,0,0,0,1],[30,13,0,0,18,13,0,0,0,0,28,12,0,0,8,9],[30,0,0,0,18,1,0,0,0,0,19,21,0,0,5,12] >;

C3⋊D15 in GAP, Magma, Sage, TeX

C_3\rtimes D_{15}
% in TeX

G:=Group("C3:D15");
// GroupNames label

G:=SmallGroup(90,9);
// by ID

G=gap.SmallGroup(90,9);
# by ID

G:=PCGroup([4,-2,-3,-3,-5,33,146,1155]);
// Polycyclic

G:=Group<a,b,c|a^3=b^15=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D15 in TeX
Character table of C3⋊D15 in TeX

׿
×
𝔽