metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊1D12, C12⋊4D4, C42⋊6S3, (C4×C12)⋊4C2, C6.3(C2×D4), (C2×D12)⋊1C2, C3⋊1(C4⋊1D4), (C2×C4).76D6, C2.5(C2×D12), (C2×C6).15C23, (C2×C12).87C22, (C22×S3).1C22, C22.36(C22×S3), SmallGroup(96,81)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊D12
G = < a,b,c | a4=b12=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Subgroups: 330 in 108 conjugacy classes, 41 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C12, D6, C2×C6, C42, C2×D4, D12, C2×C12, C22×S3, C4⋊1D4, C4×C12, C2×D12, C4⋊D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C4⋊1D4, C2×D12, C4⋊D12
Character table of C4⋊D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 2 | -2 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | -2 | 2 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2 | 0 | 0 | -2 | 1 | 1 | -1 | √3 | -√3 | 1 | √3 | -√3 | 1 | -√3 | √3 | -1 | √3 | -√3 | -1 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | 1 | √3 | √3 | -√3 | -√3 | √3 | -√3 | -√3 | -1 | -1 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -1 | √3 | -√3 | √3 | -√3 | -√3 | √3 | -√3 | 1 | 1 | √3 | orthogonal lifted from D12 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2 | 0 | 0 | 2 | 1 | 1 | -1 | -√3 | √3 | -1 | √3 | -√3 | -1 | -√3 | √3 | 1 | -√3 | √3 | 1 | orthogonal lifted from D12 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 2 | -2 | 0 | -1 | 1 | 1 | √3 | -√3 | -√3 | -1 | -1 | √3 | 1 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 2 | -2 | 0 | -1 | 1 | 1 | -√3 | √3 | √3 | -1 | -1 | -√3 | 1 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -2 | 2 | 0 | -1 | 1 | 1 | -√3 | √3 | -√3 | 1 | 1 | √3 | -1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -2 | 0 | 0 | 2 | 1 | 1 | -1 | √3 | -√3 | -1 | -√3 | √3 | -1 | √3 | -√3 | 1 | √3 | -√3 | 1 | orthogonal lifted from D12 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | -2 | 2 | 0 | -1 | 1 | 1 | √3 | -√3 | √3 | 1 | 1 | -√3 | -1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | 1 | -√3 | -√3 | √3 | √3 | -√3 | √3 | √3 | -1 | -1 | -√3 | orthogonal lifted from D12 |
ρ29 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2 | 0 | 0 | -2 | 1 | 1 | -1 | -√3 | √3 | 1 | -√3 | √3 | 1 | √3 | -√3 | -1 | -√3 | √3 | -1 | orthogonal lifted from D12 |
ρ30 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -1 | -√3 | √3 | -√3 | √3 | √3 | -√3 | √3 | 1 | 1 | -√3 | orthogonal lifted from D12 |
(1 25 19 46)(2 26 20 47)(3 27 21 48)(4 28 22 37)(5 29 23 38)(6 30 24 39)(7 31 13 40)(8 32 14 41)(9 33 15 42)(10 34 16 43)(11 35 17 44)(12 36 18 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)
G:=sub<Sym(48)| (1,25,19,46)(2,26,20,47)(3,27,21,48)(4,28,22,37)(5,29,23,38)(6,30,24,39)(7,31,13,40)(8,32,14,41)(9,33,15,42)(10,34,16,43)(11,35,17,44)(12,36,18,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)>;
G:=Group( (1,25,19,46)(2,26,20,47)(3,27,21,48)(4,28,22,37)(5,29,23,38)(6,30,24,39)(7,31,13,40)(8,32,14,41)(9,33,15,42)(10,34,16,43)(11,35,17,44)(12,36,18,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37) );
G=PermutationGroup([[(1,25,19,46),(2,26,20,47),(3,27,21,48),(4,28,22,37),(5,29,23,38),(6,30,24,39),(7,31,13,40),(8,32,14,41),(9,33,15,42),(10,34,16,43),(11,35,17,44),(12,36,18,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37)]])
C4⋊D12 is a maximal subgroup of
C4.D24 C8⋊5D12 C4.5D24 C12⋊4D8 C8⋊D12 C42.19D6 Q8⋊5D12 C4⋊D24 Dic6⋊8D4 C12⋊7D8 Q8⋊2D12 C42.64D6 C42.70D6 C12⋊D8 C12⋊6SD16 C12.D8 C42.276D6 C42⋊11D6 C42.100D6 D4×D12 Dic6⋊24D4 Q8⋊7D12 C42.136D6 C42⋊20D6 C42.155D6 C42⋊27D6 S3×C4⋊1D4 C42.240D6 C42⋊6D9 (C4×C12)⋊C6 C12⋊D12 C12⋊4D12 C20⋊D12 C42⋊6D15
C4⋊D12 is a maximal quotient of
(C2×C12)⋊5D4 (C2×C12).33D4 C8⋊5D12 C12⋊4D8 C8.8D12 C12⋊4Q16 C8⋊D12 C8.D12 C42⋊10Dic3 (C2×C4)⋊6D12 C42⋊6D9 C12⋊D12 C12⋊4D12 C20⋊D12 C42⋊6D15
Matrix representation of C4⋊D12 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 3 | 6 |
0 | 0 | 7 | 10 |
10 | 3 | 0 | 0 |
10 | 7 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 12 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,3,7,0,0,6,10],[10,10,0,0,3,7,0,0,0,0,12,1,0,0,12,0],[1,0,0,0,1,12,0,0,0,0,12,0,0,0,12,1] >;
C4⋊D12 in GAP, Magma, Sage, TeX
C_4\rtimes D_{12}
% in TeX
G:=Group("C4:D12");
// GroupNames label
G:=SmallGroup(96,81);
// by ID
G=gap.SmallGroup(96,81);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,103,218,50,2309]);
// Polycyclic
G:=Group<a,b,c|a^4=b^12=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export