direct product, metabelian, supersoluble, monomial, A-group
Aliases: S3×D9, C9⋊1D6, C3⋊1D18, C32.2D6, C9⋊S3⋊C2, (S3×C9)⋊C2, C3.1S32, (C3×D9)⋊C2, (C3×C9)⋊C22, (C3×S3).S3, SmallGroup(108,16)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C9 — S3×D9 |
Generators and relations for S3×D9
G = < a,b,c,d | a3=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D9
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 18A | 18B | 18C | |
size | 1 | 3 | 9 | 27 | 2 | 2 | 4 | 6 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | 2 | -1 | -1 | 0 | 1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 0 | 2 | -1 | -1 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 0 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ10 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 0 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ12 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 0 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | 0 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ15 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ16 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | 0 | 0 | 0 | orthogonal faithful |
ρ17 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | 0 | 0 | 0 | orthogonal faithful |
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 10)(8 11)(9 12)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(1 12)(2 11)(3 10)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)
G:=sub<Sym(18)| (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,12)(2,11)(3,10)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)>;
G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,10)(8,11)(9,12), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (1,12)(2,11)(3,10)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13) );
G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,10),(8,11),(9,12)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(1,12),(2,11),(3,10),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13)]])
G:=TransitiveGroup(18,50);
(1 12 25)(2 13 26)(3 14 27)(4 15 19)(5 16 20)(6 17 21)(7 18 22)(8 10 23)(9 11 24)
(10 23)(11 24)(12 25)(13 26)(14 27)(15 19)(16 20)(17 21)(18 22)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 9)(2 8)(3 7)(4 6)(10 13)(11 12)(14 18)(15 17)(19 21)(22 27)(23 26)(24 25)
G:=sub<Sym(27)| (1,12,25)(2,13,26)(3,14,27)(4,15,19)(5,16,20)(6,17,21)(7,18,22)(8,10,23)(9,11,24), (10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9)(2,8)(3,7)(4,6)(10,13)(11,12)(14,18)(15,17)(19,21)(22,27)(23,26)(24,25)>;
G:=Group( (1,12,25)(2,13,26)(3,14,27)(4,15,19)(5,16,20)(6,17,21)(7,18,22)(8,10,23)(9,11,24), (10,23)(11,24)(12,25)(13,26)(14,27)(15,19)(16,20)(17,21)(18,22), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,9)(2,8)(3,7)(4,6)(10,13)(11,12)(14,18)(15,17)(19,21)(22,27)(23,26)(24,25) );
G=PermutationGroup([[(1,12,25),(2,13,26),(3,14,27),(4,15,19),(5,16,20),(6,17,21),(7,18,22),(8,10,23),(9,11,24)], [(10,23),(11,24),(12,25),(13,26),(14,27),(15,19),(16,20),(17,21),(18,22)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,9),(2,8),(3,7),(4,6),(10,13),(11,12),(14,18),(15,17),(19,21),(22,27),(23,26),(24,25)]])
G:=TransitiveGroup(27,30);
S3×D9 is a maximal subgroup of
C32⋊D18 He3.D6 He3.2D6 C32⋊5D18 He3.6D6
S3×D9 is a maximal quotient of C9⋊Dic6 C18.D6 C3⋊D36 D6⋊D9 C9⋊D12 C32⋊D18 C32⋊5D18
Matrix representation of S3×D9 ►in GL4(𝔽19) generated by
18 | 1 | 0 | 0 |
18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 18 | 0 | 0 |
18 | 0 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 7 | 17 |
18 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 7 | 17 |
0 | 0 | 5 | 12 |
G:=sub<GL(4,GF(19))| [18,18,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,18,0,0,18,0,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,5,7,0,0,12,17],[18,0,0,0,0,18,0,0,0,0,7,5,0,0,17,12] >;
S3×D9 in GAP, Magma, Sage, TeX
S_3\times D_9
% in TeX
G:=Group("S3xD9");
// GroupNames label
G:=SmallGroup(108,16);
// by ID
G=gap.SmallGroup(108,16);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,337,282,483,909]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D9 in TeX
Character table of S3×D9 in TeX