metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: Dic28, C8.D7, C7⋊1Q16, C56.1C2, C14.3D4, C2.5D28, C4.10D14, C28.10C22, Dic14.1C2, SmallGroup(112,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic28
G = < a,b | a56=1, b2=a28, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 85 29 57)(2 84 30 112)(3 83 31 111)(4 82 32 110)(5 81 33 109)(6 80 34 108)(7 79 35 107)(8 78 36 106)(9 77 37 105)(10 76 38 104)(11 75 39 103)(12 74 40 102)(13 73 41 101)(14 72 42 100)(15 71 43 99)(16 70 44 98)(17 69 45 97)(18 68 46 96)(19 67 47 95)(20 66 48 94)(21 65 49 93)(22 64 50 92)(23 63 51 91)(24 62 52 90)(25 61 53 89)(26 60 54 88)(27 59 55 87)(28 58 56 86)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,29,57)(2,84,30,112)(3,83,31,111)(4,82,32,110)(5,81,33,109)(6,80,34,108)(7,79,35,107)(8,78,36,106)(9,77,37,105)(10,76,38,104)(11,75,39,103)(12,74,40,102)(13,73,41,101)(14,72,42,100)(15,71,43,99)(16,70,44,98)(17,69,45,97)(18,68,46,96)(19,67,47,95)(20,66,48,94)(21,65,49,93)(22,64,50,92)(23,63,51,91)(24,62,52,90)(25,61,53,89)(26,60,54,88)(27,59,55,87)(28,58,56,86)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,29,57)(2,84,30,112)(3,83,31,111)(4,82,32,110)(5,81,33,109)(6,80,34,108)(7,79,35,107)(8,78,36,106)(9,77,37,105)(10,76,38,104)(11,75,39,103)(12,74,40,102)(13,73,41,101)(14,72,42,100)(15,71,43,99)(16,70,44,98)(17,69,45,97)(18,68,46,96)(19,67,47,95)(20,66,48,94)(21,65,49,93)(22,64,50,92)(23,63,51,91)(24,62,52,90)(25,61,53,89)(26,60,54,88)(27,59,55,87)(28,58,56,86) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,85,29,57),(2,84,30,112),(3,83,31,111),(4,82,32,110),(5,81,33,109),(6,80,34,108),(7,79,35,107),(8,78,36,106),(9,77,37,105),(10,76,38,104),(11,75,39,103),(12,74,40,102),(13,73,41,101),(14,72,42,100),(15,71,43,99),(16,70,44,98),(17,69,45,97),(18,68,46,96),(19,67,47,95),(20,66,48,94),(21,65,49,93),(22,64,50,92),(23,63,51,91),(24,62,52,90),(25,61,53,89),(26,60,54,88),(27,59,55,87),(28,58,56,86)]])
Dic28 is a maximal subgroup of
C112⋊C2 Dic56 D8.D7 C7⋊Q32 D56⋊7C2 C8.D14 D8⋊3D7 SD16⋊D7 D7×Q16 C8.F7 C3⋊Dic28 Dic84
Dic28 is a maximal quotient of
C28.44D4 C56⋊1C4 C3⋊Dic28 Dic84
31 conjugacy classes
| class | 1 | 2 | 4A | 4B | 4C | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 28A | ··· | 28F | 56A | ··· | 56L |
| order | 1 | 2 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | 14 | 14 | 28 | ··· | 28 | 56 | ··· | 56 |
| size | 1 | 1 | 2 | 28 | 28 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
31 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | - | + | + | - |
| image | C1 | C2 | C2 | D4 | D7 | Q16 | D14 | D28 | Dic28 |
| kernel | Dic28 | C56 | Dic14 | C14 | C8 | C7 | C4 | C2 | C1 |
| # reps | 1 | 1 | 2 | 1 | 3 | 2 | 3 | 6 | 12 |
Matrix representation of Dic28 ►in GL2(𝔽113) generated by
| 40 | 106 |
| 69 | 84 |
| 55 | 37 |
| 19 | 58 |
G:=sub<GL(2,GF(113))| [40,69,106,84],[55,19,37,58] >;
Dic28 in GAP, Magma, Sage, TeX
{\rm Dic}_{28} % in TeX
G:=Group("Dic28"); // GroupNames label
G:=SmallGroup(112,7);
// by ID
G=gap.SmallGroup(112,7);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,40,61,66,182,42,2404]);
// Polycyclic
G:=Group<a,b|a^56=1,b^2=a^28,b*a*b^-1=a^-1>;
// generators/relations
Export