Copied to
clipboard

G = C24.635C23order 128 = 27

14th central extension by C24 of C23

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.635C23, (C22×C4).10Q8, C22.38(C4×Q8), C23.725(C2×D4), (C22×C4).126D4, C22.128(C4×D4), C22.25(C4⋊Q8), C23.134(C2×Q8), (C23×C4).13C22, C23.348(C4○D4), C22.26(C41D4), C23.304(C22×C4), C22.65(C22⋊Q8), C2.3(C23.4Q8), C22.104(C4⋊D4), C2.5(C23.34D4), C2.5(C23.11D4), C22.53(C4.4D4), C22.23(C42.C2), C22.28(C422C2), C22.77(C42⋊C2), C2.6(C24.3C22), C2.4(C23.81C23), C2.7(C23.63C23), C2.5(C23.67C23), C2.4(C23.83C23), C22.77(C22.D4), (C2×C4⋊C4)⋊19C4, (C22×C4⋊C4).6C2, (C2×C4).66(C22⋊C4), (C22×C4).101(C2×C4), C22.142(C2×C22⋊C4), (C2×C2.C42).14C2, SmallGroup(128,177)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.635C23
C1C2C22C23C24C23×C4C22×C4⋊C4 — C24.635C23
C1C23 — C24.635C23
C1C24 — C24.635C23
C1C24 — C24.635C23

Generators and relations for C24.635C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=ba=ab, ac=ca, ad=da, fef-1=ae=ea, af=fa, ag=ga, bc=cb, bd=db, geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, gfg-1=cf=fc, cg=gc, de=ed, df=fd, dg=gd >

Subgroups: 484 in 260 conjugacy classes, 108 normal (18 characteristic)
C1, C2 [×3], C2 [×12], C4 [×16], C22 [×5], C22 [×30], C2×C4 [×4], C2×C4 [×72], C23 [×3], C23 [×12], C4⋊C4 [×8], C22×C4 [×18], C22×C4 [×40], C24, C2.C42 [×12], C2×C4⋊C4 [×4], C2×C4⋊C4 [×4], C23×C4, C23×C4 [×6], C2×C2.C42 [×2], C2×C2.C42 [×4], C22×C4⋊C4, C24.635C23
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×8], Q8 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×4], C2×Q8 [×2], C4○D4 [×8], C2×C22⋊C4, C42⋊C2 [×2], C4×D4 [×2], C4×Q8 [×2], C4⋊D4 [×2], C22⋊Q8 [×6], C22.D4 [×8], C4.4D4 [×2], C42.C2 [×4], C422C2 [×4], C41D4, C4⋊Q8, C23.34D4, C23.63C23 [×4], C24.3C22, C23.67C23, C23.11D4 [×2], C23.81C23 [×2], C23.4Q8 [×2], C23.83C23 [×2], C24.635C23

Smallest permutation representation of C24.635C23
Regular action on 128 points
Generators in S128
(1 73)(2 74)(3 75)(4 76)(5 96)(6 93)(7 94)(8 95)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 71)(34 72)(35 69)(36 70)(37 41)(38 42)(39 43)(40 44)(45 49)(46 50)(47 51)(48 52)(53 57)(54 58)(55 59)(56 60)(61 67)(62 68)(63 65)(64 66)(77 81)(78 82)(79 83)(80 84)(85 89)(86 90)(87 91)(88 92)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)
(1 9)(2 10)(3 11)(4 12)(5 70)(6 71)(7 72)(8 69)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 127)(66 128)(67 125)(68 126)
(1 99)(2 100)(3 97)(4 98)(5 126)(6 127)(7 128)(8 125)(9 39)(10 40)(11 37)(12 38)(13 43)(14 44)(15 41)(16 42)(17 47)(18 48)(19 45)(20 46)(21 51)(22 52)(23 49)(24 50)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 63)(34 64)(35 61)(36 62)(65 71)(66 72)(67 69)(68 70)(73 103)(74 104)(75 101)(76 102)(77 107)(78 108)(79 105)(80 106)(81 111)(82 112)(83 109)(84 110)(85 115)(86 116)(87 113)(88 114)(89 119)(90 120)(91 117)(92 118)(93 123)(94 124)(95 121)(96 122)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 29 13 85)(2 26 14 90)(3 31 15 87)(4 28 16 92)(5 80 36 24)(6 81 33 17)(7 78 34 22)(8 83 35 19)(9 89 73 25)(10 86 74 30)(11 91 75 27)(12 88 76 32)(18 94 82 72)(20 96 84 70)(21 93 77 71)(23 95 79 69)(37 117 101 53)(38 114 102 58)(39 119 103 55)(40 116 104 60)(41 113 97 57)(42 118 98 54)(43 115 99 59)(44 120 100 56)(45 125 109 61)(46 122 110 68)(47 127 111 63)(48 124 112 66)(49 121 105 67)(50 126 106 62)(51 123 107 65)(52 128 108 64)
(1 21 13 77)(2 82 14 18)(3 23 15 79)(4 84 16 20)(5 58 36 114)(6 119 33 55)(7 60 34 116)(8 117 35 53)(9 81 73 17)(10 22 74 78)(11 83 75 19)(12 24 76 80)(25 127 89 63)(26 66 90 124)(27 125 91 61)(28 68 92 122)(29 123 85 65)(30 64 86 128)(31 121 87 67)(32 62 88 126)(37 109 101 45)(38 50 102 106)(39 111 103 47)(40 52 104 108)(41 105 97 49)(42 46 98 110)(43 107 99 51)(44 48 100 112)(54 70 118 96)(56 72 120 94)(57 95 113 69)(59 93 115 71)

G:=sub<Sym(128)| (1,73)(2,74)(3,75)(4,76)(5,96)(6,93)(7,94)(8,95)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,71)(34,72)(35,69)(36,70)(37,41)(38,42)(39,43)(40,44)(45,49)(46,50)(47,51)(48,52)(53,57)(54,58)(55,59)(56,60)(61,67)(62,68)(63,65)(64,66)(77,81)(78,82)(79,83)(80,84)(85,89)(86,90)(87,91)(88,92)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128), (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,29,13,85)(2,26,14,90)(3,31,15,87)(4,28,16,92)(5,80,36,24)(6,81,33,17)(7,78,34,22)(8,83,35,19)(9,89,73,25)(10,86,74,30)(11,91,75,27)(12,88,76,32)(18,94,82,72)(20,96,84,70)(21,93,77,71)(23,95,79,69)(37,117,101,53)(38,114,102,58)(39,119,103,55)(40,116,104,60)(41,113,97,57)(42,118,98,54)(43,115,99,59)(44,120,100,56)(45,125,109,61)(46,122,110,68)(47,127,111,63)(48,124,112,66)(49,121,105,67)(50,126,106,62)(51,123,107,65)(52,128,108,64), (1,21,13,77)(2,82,14,18)(3,23,15,79)(4,84,16,20)(5,58,36,114)(6,119,33,55)(7,60,34,116)(8,117,35,53)(9,81,73,17)(10,22,74,78)(11,83,75,19)(12,24,76,80)(25,127,89,63)(26,66,90,124)(27,125,91,61)(28,68,92,122)(29,123,85,65)(30,64,86,128)(31,121,87,67)(32,62,88,126)(37,109,101,45)(38,50,102,106)(39,111,103,47)(40,52,104,108)(41,105,97,49)(42,46,98,110)(43,107,99,51)(44,48,100,112)(54,70,118,96)(56,72,120,94)(57,95,113,69)(59,93,115,71)>;

G:=Group( (1,73)(2,74)(3,75)(4,76)(5,96)(6,93)(7,94)(8,95)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,71)(34,72)(35,69)(36,70)(37,41)(38,42)(39,43)(40,44)(45,49)(46,50)(47,51)(48,52)(53,57)(54,58)(55,59)(56,60)(61,67)(62,68)(63,65)(64,66)(77,81)(78,82)(79,83)(80,84)(85,89)(86,90)(87,91)(88,92)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128), (1,9)(2,10)(3,11)(4,12)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,126)(6,127)(7,128)(8,125)(9,39)(10,40)(11,37)(12,38)(13,43)(14,44)(15,41)(16,42)(17,47)(18,48)(19,45)(20,46)(21,51)(22,52)(23,49)(24,50)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,63)(34,64)(35,61)(36,62)(65,71)(66,72)(67,69)(68,70)(73,103)(74,104)(75,101)(76,102)(77,107)(78,108)(79,105)(80,106)(81,111)(82,112)(83,109)(84,110)(85,115)(86,116)(87,113)(88,114)(89,119)(90,120)(91,117)(92,118)(93,123)(94,124)(95,121)(96,122), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,29,13,85)(2,26,14,90)(3,31,15,87)(4,28,16,92)(5,80,36,24)(6,81,33,17)(7,78,34,22)(8,83,35,19)(9,89,73,25)(10,86,74,30)(11,91,75,27)(12,88,76,32)(18,94,82,72)(20,96,84,70)(21,93,77,71)(23,95,79,69)(37,117,101,53)(38,114,102,58)(39,119,103,55)(40,116,104,60)(41,113,97,57)(42,118,98,54)(43,115,99,59)(44,120,100,56)(45,125,109,61)(46,122,110,68)(47,127,111,63)(48,124,112,66)(49,121,105,67)(50,126,106,62)(51,123,107,65)(52,128,108,64), (1,21,13,77)(2,82,14,18)(3,23,15,79)(4,84,16,20)(5,58,36,114)(6,119,33,55)(7,60,34,116)(8,117,35,53)(9,81,73,17)(10,22,74,78)(11,83,75,19)(12,24,76,80)(25,127,89,63)(26,66,90,124)(27,125,91,61)(28,68,92,122)(29,123,85,65)(30,64,86,128)(31,121,87,67)(32,62,88,126)(37,109,101,45)(38,50,102,106)(39,111,103,47)(40,52,104,108)(41,105,97,49)(42,46,98,110)(43,107,99,51)(44,48,100,112)(54,70,118,96)(56,72,120,94)(57,95,113,69)(59,93,115,71) );

G=PermutationGroup([(1,73),(2,74),(3,75),(4,76),(5,96),(6,93),(7,94),(8,95),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,71),(34,72),(35,69),(36,70),(37,41),(38,42),(39,43),(40,44),(45,49),(46,50),(47,51),(48,52),(53,57),(54,58),(55,59),(56,60),(61,67),(62,68),(63,65),(64,66),(77,81),(78,82),(79,83),(80,84),(85,89),(86,90),(87,91),(88,92),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128)], [(1,9),(2,10),(3,11),(4,12),(5,70),(6,71),(7,72),(8,69),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,127),(66,128),(67,125),(68,126)], [(1,99),(2,100),(3,97),(4,98),(5,126),(6,127),(7,128),(8,125),(9,39),(10,40),(11,37),(12,38),(13,43),(14,44),(15,41),(16,42),(17,47),(18,48),(19,45),(20,46),(21,51),(22,52),(23,49),(24,50),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,63),(34,64),(35,61),(36,62),(65,71),(66,72),(67,69),(68,70),(73,103),(74,104),(75,101),(76,102),(77,107),(78,108),(79,105),(80,106),(81,111),(82,112),(83,109),(84,110),(85,115),(86,116),(87,113),(88,114),(89,119),(90,120),(91,117),(92,118),(93,123),(94,124),(95,121),(96,122)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,29,13,85),(2,26,14,90),(3,31,15,87),(4,28,16,92),(5,80,36,24),(6,81,33,17),(7,78,34,22),(8,83,35,19),(9,89,73,25),(10,86,74,30),(11,91,75,27),(12,88,76,32),(18,94,82,72),(20,96,84,70),(21,93,77,71),(23,95,79,69),(37,117,101,53),(38,114,102,58),(39,119,103,55),(40,116,104,60),(41,113,97,57),(42,118,98,54),(43,115,99,59),(44,120,100,56),(45,125,109,61),(46,122,110,68),(47,127,111,63),(48,124,112,66),(49,121,105,67),(50,126,106,62),(51,123,107,65),(52,128,108,64)], [(1,21,13,77),(2,82,14,18),(3,23,15,79),(4,84,16,20),(5,58,36,114),(6,119,33,55),(7,60,34,116),(8,117,35,53),(9,81,73,17),(10,22,74,78),(11,83,75,19),(12,24,76,80),(25,127,89,63),(26,66,90,124),(27,125,91,61),(28,68,92,122),(29,123,85,65),(30,64,86,128),(31,121,87,67),(32,62,88,126),(37,109,101,45),(38,50,102,106),(39,111,103,47),(40,52,104,108),(41,105,97,49),(42,46,98,110),(43,107,99,51),(44,48,100,112),(54,70,118,96),(56,72,120,94),(57,95,113,69),(59,93,115,71)])

44 conjugacy classes

class 1 2A···2O4A···4AB
order12···24···4
size11···14···4

44 irreducible representations

dim1111222
type++++-
imageC1C2C2C4D4Q8C4○D4
kernelC24.635C23C2×C2.C42C22×C4⋊C4C2×C4⋊C4C22×C4C22×C4C23
# reps16188416

Matrix representation of C24.635C23 in GL8(𝔽5)

40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
10000000
01000000
00100000
00010000
00001000
00000100
00000040
00000004
,
40000000
04000000
00100000
00010000
00004000
00000400
00000040
00000004
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
02000000
30000000
00300000
00420000
00002000
00004300
00000030
00000032
,
03000000
30000000
00330000
00020000
00002300
00000300
00000013
00000004
,
01000000
40000000
00200000
00020000
00002000
00004300
00000021
00000023

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,2],[0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,1,3] >;

C24.635C23 in GAP, Magma, Sage, TeX

C_2^4._{635}C_2^3
% in TeX

G:=Group("C2^4.635C2^3");
// GroupNames label

G:=SmallGroup(128,177);
// by ID

G=gap.SmallGroup(128,177);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,2,448,141,176,422,387,142]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=b*a=a*b,a*c=c*a,a*d=d*a,f*e*f^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽