p-group, metabelian, nilpotent (class 2), monomial
Aliases: C4.4D4, C42⋊5C2, C23.3C22, C22.14C23, (C2×Q8)⋊2C2, C2.8(C2×D4), C22⋊C4⋊5C2, (C2×D4).5C2, C2.7(C4○D4), (C2×C4).22C22, SmallGroup(32,31)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.4D4
G = < a,b,c | a4=b4=1, c2=a2, ab=ba, cac-1=a-1, cbc-1=a2b-1 >
Character table of C4.4D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10 15 5)(2 11 16 6)(3 12 13 7)(4 9 14 8)
(1 6 3 8)(2 5 4 7)(9 15 11 13)(10 14 12 16)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,5)(2,11,16,6)(3,12,13,7)(4,9,14,8), (1,6,3,8)(2,5,4,7)(9,15,11,13)(10,14,12,16)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,15,5)(2,11,16,6)(3,12,13,7)(4,9,14,8), (1,6,3,8)(2,5,4,7)(9,15,11,13)(10,14,12,16) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10,15,5),(2,11,16,6),(3,12,13,7),(4,9,14,8)], [(1,6,3,8),(2,5,4,7),(9,15,11,13),(10,14,12,16)]])
G:=TransitiveGroup(16,30);
C4.4D4 is a maximal subgroup of
C42.C22 C42.C4 D4.8D4 D4.2D4 Q8.D4 C42.78C22 C42.28C22 C8⋊3D4 C23.36C23 C22.26C24 C22.29C24 C23.38C23 C22.32C24 C22.36C24 D4⋊5D4 Q8⋊5D4 C22.45C24 C22.49C24 C22.50C24 C22.53C24 C24⋊C22 C22.56C24 C22.57C24 C4.4S3≀C2
C4p.D4: C8.12D4 C8.2D4 C42⋊7S3 C23.12D6 C12.23D4 C4.D20 C20.17D4 C20.23D4 ...
C23.D2p: C42⋊3C4 D4.9D4 C23.11D6 Dic5.5D4 Dic7.D4 Dic11.D4 C23.6D26 ...
C4.4D4 is a maximal quotient of
C24.3C22 C4.4S3≀C2
C4.D4p: C4.4D8 C42⋊7S3 C4.D20 C4.D28 C4.D44 C4.D52 ...
C23.D2p: C23.10D4 C23.11D4 C23.11D6 C23.12D6 Dic5.5D4 C20.17D4 Dic7.D4 C28.17D4 ...
(C2×C4).D2p: C42⋊8C4 C24.C22 C23.67C23 C23⋊Q8 C23.83C23 C4.SD16 C42.78C22 C42.28C22 ...
Matrix representation of C4.4D4 ►in GL4(𝔽5) generated by
3 | 4 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 1 |
0 | 0 | 0 | 3 |
1 | 3 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
1 | 3 | 0 | 0 |
1 | 4 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 3 | 2 |
G:=sub<GL(4,GF(5))| [3,0,0,0,4,2,0,0,0,0,2,0,0,0,1,3],[1,0,0,0,3,4,0,0,0,0,3,0,0,0,0,3],[1,1,0,0,3,4,0,0,0,0,3,3,0,0,0,2] >;
C4.4D4 in GAP, Magma, Sage, TeX
C_4._4D_4
% in TeX
G:=Group("C4.4D4");
// GroupNames label
G:=SmallGroup(32,31);
// by ID
G=gap.SmallGroup(32,31);
# by ID
G:=PCGroup([5,-2,2,2,-2,2,101,86,302,42]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=1,c^2=a^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.4D4 in TeX
Character table of C4.4D4 in TeX