Extensions 1→N→G→Q→1 with N=C4xQ16 and Q=C2

Direct product G=NxQ with N=C4xQ16 and Q=C2
dρLabelID
C2xC4xQ16128C2xC4xQ16128,1670

Semidirect products G=N:Q with N=C4xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xQ16):1C2 = C4xSD32φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):1C2128,905
(C4xQ16):2C2 = Q16:2D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):2C2128,939
(C4xQ16):3C2 = C42.384D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):3C2128,1834
(C4xQ16):4C2 = C42.224D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):4C2128,1836
(C4xQ16):5C2 = C42.358C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):5C2128,1856
(C4xQ16):6C2 = C42.361C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):6C2128,1859
(C4xQ16):7C2 = C42.308D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):7C2128,1900
(C4xQ16):8C2 = C42.367D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):8C2128,1902
(C4xQ16):9C2 = D4xQ16φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):9C2128,2018
(C4xQ16):10C2 = Q16:13D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):10C2128,2019
(C4xQ16):11C2 = D4:5Q16φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):11C2128,2031
(C4xQ16):12C2 = C42.465C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):12C2128,2032
(C4xQ16):13C2 = C42.469C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):13C2128,2036
(C4xQ16):14C2 = D4:6Q16φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):14C2128,2070
(C4xQ16):15C2 = C42.491C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):15C2128,2074
(C4xQ16):16C2 = C42.505C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):16C2128,2096
(C4xQ16):17C2 = C42.506C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):17C2128,2097
(C4xQ16):18C2 = C42.530C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):18C2128,2128
(C4xQ16):19C2 = Q16.5D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):19C2128,943
(C4xQ16):20C2 = C42.451D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):20C2128,1839
(C4xQ16):21C2 = C42.226D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):21C2128,1840
(C4xQ16):22C2 = C42.354C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):22C2128,1852
(C4xQ16):23C2 = C42.355C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):23C2128,1853
(C4xQ16):24C2 = Q16:12D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):24C2128,2017
(C4xQ16):25C2 = C42.485C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):25C2128,2068
(C4xQ16):26C2 = C42.527C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):26C2128,2125
(C4xQ16):27C2 = C4xC8.C22φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):27C2128,1677
(C4xQ16):28C2 = C42.276C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):28C2128,1679
(C4xQ16):29C2 = C42.256D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):29C2128,1904
(C4xQ16):30C2 = C42.390C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):30C2128,1910
(C4xQ16):31C2 = Q16:4D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):31C2128,2009
(C4xQ16):32C2 = Q16:5D4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):32C2128,2010
(C4xQ16):33C2 = C42.493C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):33C2128,2084
(C4xQ16):34C2 = C42.497C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):34C2128,2088
(C4xQ16):35C2 = C42.75C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):35C2128,2132
(C4xQ16):36C2 = C42.532C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):36C2128,2134
(C4xQ16):37C2 = SD32:3C4φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):37C2128,907
(C4xQ16):38C2 = C42.279C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):38C2128,1682
(C4xQ16):39C2 = C42.280C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):39C2128,1683
(C4xQ16):40C2 = C42.387C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):40C2128,1907
(C4xQ16):41C2 = C42.389C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):41C2128,1909
(C4xQ16):42C2 = C42.476C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):42C2128,2059
(C4xQ16):43C2 = C42.477C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):43C2128,2060
(C4xQ16):44C2 = C42.482C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):44C2128,2065
(C4xQ16):45C2 = C42.516C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):45C2128,2107
(C4xQ16):46C2 = C42.518C23φ: C2/C1C2 ⊆ Out C4xQ1664(C4xQ16):46C2128,2109
(C4xQ16):47C2 = C4xC4oD8φ: trivial image64(C4xQ16):47C2128,1671

Non-split extensions G=N.Q with N=C4xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xQ16).1C2 = Q16:1C8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).1C2128,64
(C4xQ16).2C2 = C8:9Q16φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).2C2128,316
(C4xQ16).3C2 = C8:6Q16φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).3C2128,323
(C4xQ16).4C2 = C4xQ32φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).4C2128,906
(C4xQ16).5C2 = Q16.4D4φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).5C2128,941
(C4xQ16).6C2 = Q16:Q8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).6C2128,957
(C4xQ16).7C2 = C4.Q32φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).7C2128,959
(C4xQ16).8C2 = Q8:5Q16φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).8C2128,2095
(C4xQ16).9C2 = Q8xQ16φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).9C2128,2114
(C4xQ16).10C2 = Q16:6Q8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).10C2128,2115
(C4xQ16).11C2 = Q8:6Q16φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).11C2128,2127
(C4xQ16).12C2 = Q8.M4(2)φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).12C2128,319
(C4xQ16).13C2 = Q16.Q8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).13C2128,961
(C4xQ16).14C2 = Q16:C8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).14C2128,66
(C4xQ16).15C2 = Q16:5C8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).15C2128,311
(C4xQ16).16C2 = C8.M4(2)φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).16C2128,325
(C4xQ16).17C2 = Q16:4Q8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).17C2128,2119
(C4xQ16).18C2 = Q16:5Q8φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).18C2128,2122
(C4xQ16).19C2 = Q32:4C4φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).19C2128,908
(C4xQ16).20C2 = C42.515C23φ: C2/C1C2 ⊆ Out C4xQ16128(C4xQ16).20C2128,2106
(C4xQ16).21C2 = C8xQ16φ: trivial image128(C4xQ16).21C2128,309

׿
x
:
Z
F
o
wr
Q
<