direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4×Q16, C42.73C22, (C4×C8).6C2, C8.10(C2×C4), C4○3(C2.D8), C2.14(C4×D4), (C2×C4).53D4, Q8.1(C2×C4), (C4×Q8).2C2, C2.3(C2×Q16), C2.D8.9C2, C4.3(C4○D4), C2.5(C4○D8), (C2×Q16).7C2, C4○3(Q8⋊C4), C4⋊C4.52C22, (C2×C4).75C23, C4.11(C22×C4), (C2×C8).64C22, Q8⋊C4.8C2, C22.53(C2×D4), (C2×Q8).45C22, SmallGroup(64,120)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4×Q16
G = < a,b,c | a4=b8=1, c2=b4, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C4×Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | -i | -i | i | i | -1 | 1 | i | -i | 1 | i | i | -1 | 1 | -1 | -i | -i | i | -1 | i | -1 | -i | 1 | -i | 1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | 1 | -i | -i | i | i | -1 | 1 | i | -i | 1 | i | -i | 1 | -1 | -1 | -i | i | -i | 1 | -i | 1 | i | -1 | i | -1 | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | i | i | -i | -i | -1 | 1 | -i | i | -1 | i | -i | -1 | 1 | 1 | -i | i | i | 1 | i | 1 | -i | -1 | -i | -1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | i | i | -i | -i | -1 | 1 | -i | i | -1 | i | i | 1 | -1 | 1 | -i | -i | -i | -1 | -i | -1 | i | 1 | i | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | -i | -i | i | i | -1 | 1 | i | -i | -1 | -i | -i | 1 | -1 | 1 | i | i | i | -1 | i | -1 | -i | 1 | -i | 1 | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -i | -i | i | i | -1 | 1 | i | -i | -1 | -i | i | -1 | 1 | 1 | i | -i | -i | 1 | -i | 1 | i | -1 | i | -1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | i | i | -i | -i | -1 | 1 | -i | i | 1 | -i | i | 1 | -1 | -1 | i | -i | i | 1 | i | 1 | -i | -1 | -i | -1 | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | i | i | -i | -i | -1 | 1 | -i | i | 1 | -i | -i | -1 | 1 | -1 | i | i | -i | -1 | -i | -1 | i | 1 | i | 1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 2 | 2 | -2 | -2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√2 | -√-2 | √2 | √-2 | -√2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ24 | 2 | -2 | -2 | 2 | -2i | -2i | 2i | 2i | 2 | -2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 2 | 2 | -2 | -2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√2 | √-2 | √2 | -√-2 | -√2 | √-2 | √2 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √2 | -√-2 | -√2 | √-2 | √2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ27 | 2 | 2 | -2 | -2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √2 | √-2 | -√2 | -√-2 | √2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ28 | 2 | -2 | -2 | 2 | 2i | 2i | -2i | -2i | 2 | -2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 32 60 51)(2 25 61 52)(3 26 62 53)(4 27 63 54)(5 28 64 55)(6 29 57 56)(7 30 58 49)(8 31 59 50)(9 48 39 18)(10 41 40 19)(11 42 33 20)(12 43 34 21)(13 44 35 22)(14 45 36 23)(15 46 37 24)(16 47 38 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 12 5 16)(2 11 6 15)(3 10 7 14)(4 9 8 13)(17 51 21 55)(18 50 22 54)(19 49 23 53)(20 56 24 52)(25 42 29 46)(26 41 30 45)(27 48 31 44)(28 47 32 43)(33 57 37 61)(34 64 38 60)(35 63 39 59)(36 62 40 58)
G:=sub<Sym(64)| (1,32,60,51)(2,25,61,52)(3,26,62,53)(4,27,63,54)(5,28,64,55)(6,29,57,56)(7,30,58,49)(8,31,59,50)(9,48,39,18)(10,41,40,19)(11,42,33,20)(12,43,34,21)(13,44,35,22)(14,45,36,23)(15,46,37,24)(16,47,38,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,51,21,55)(18,50,22,54)(19,49,23,53)(20,56,24,52)(25,42,29,46)(26,41,30,45)(27,48,31,44)(28,47,32,43)(33,57,37,61)(34,64,38,60)(35,63,39,59)(36,62,40,58)>;
G:=Group( (1,32,60,51)(2,25,61,52)(3,26,62,53)(4,27,63,54)(5,28,64,55)(6,29,57,56)(7,30,58,49)(8,31,59,50)(9,48,39,18)(10,41,40,19)(11,42,33,20)(12,43,34,21)(13,44,35,22)(14,45,36,23)(15,46,37,24)(16,47,38,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,12,5,16)(2,11,6,15)(3,10,7,14)(4,9,8,13)(17,51,21,55)(18,50,22,54)(19,49,23,53)(20,56,24,52)(25,42,29,46)(26,41,30,45)(27,48,31,44)(28,47,32,43)(33,57,37,61)(34,64,38,60)(35,63,39,59)(36,62,40,58) );
G=PermutationGroup([[(1,32,60,51),(2,25,61,52),(3,26,62,53),(4,27,63,54),(5,28,64,55),(6,29,57,56),(7,30,58,49),(8,31,59,50),(9,48,39,18),(10,41,40,19),(11,42,33,20),(12,43,34,21),(13,44,35,22),(14,45,36,23),(15,46,37,24),(16,47,38,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,12,5,16),(2,11,6,15),(3,10,7,14),(4,9,8,13),(17,51,21,55),(18,50,22,54),(19,49,23,53),(20,56,24,52),(25,42,29,46),(26,41,30,45),(27,48,31,44),(28,47,32,43),(33,57,37,61),(34,64,38,60),(35,63,39,59),(36,62,40,58)]])
C4×Q16 is a maximal subgroup of
Q16⋊1C8 Q16⋊C8 Q16⋊5C8 C8⋊9Q16 Q8.M4(2) C8⋊6Q16 C8.M4(2) Q16⋊2D4 Q16.4D4 Q16.5D4 Q16⋊Q8 C4.Q32 Q16.Q8 C42.384D4 C42.224D4 C42.451D4 C42.226D4 C42.354C23 C42.355C23 C42.358C23 C42.361C23 C42.308D4 C42.367D4 C42.256D4 C42.387C23 C42.389C23 C42.390C23 Q16⋊4D4 Q16⋊5D4 Q16⋊12D4 Q16⋊13D4 D4⋊5Q16 C42.465C23 C42.469C23 C42.476C23 C42.477C23 C42.482C23 C42.485C23 D4⋊6Q16 C42.491C23 C42.493C23 C42.497C23 Q8⋊5Q16 C42.505C23 C42.506C23 C42.515C23 C42.516C23 C42.518C23 Q16⋊6Q8 Q16⋊4Q8 Q16⋊5Q8 C42.527C23 Q8⋊6Q16 C42.530C23 C42.75C23 C42.532C23
C2p.(C4×D4): SD32⋊3C4 Q32⋊4C4 C42.276C23 C42.279C23 C42.280C23 Dic3⋊4Q16 Dic3⋊5Q16 Dic5⋊4Q16 ...
C4×Q16 is a maximal quotient of
C8⋊9Q16 C8⋊6Q16 C2.D8⋊5C4 C8⋊5(C4⋊C4)
C2p.(C4×D4): Q8⋊(C4⋊C4) (C2×C4)⋊9Q16 C2.(C4×Q16) C2.(C8⋊8D4) (C2×C4)⋊6Q16 Dic3⋊4Q16 Dic3⋊5Q16 Dic5⋊4Q16 ...
Matrix representation of C4×Q16 ►in GL4(𝔽17) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 13 | 9 |
0 | 0 | 0 | 4 |
G:=sub<GL(4,GF(17))| [4,0,0,0,0,4,0,0,0,0,16,0,0,0,0,16],[0,16,0,0,1,0,0,0,0,0,11,3,0,0,11,0],[0,16,0,0,16,0,0,0,0,0,13,0,0,0,9,4] >;
C4×Q16 in GAP, Magma, Sage, TeX
C_4\times Q_{16}
% in TeX
G:=Group("C4xQ16");
// GroupNames label
G:=SmallGroup(64,120);
// by ID
G=gap.SmallGroup(64,120);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,199,230,963,489,117]);
// Polycyclic
G:=Group<a,b,c|a^4=b^8=1,c^2=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C4×Q16 in TeX
Character table of C4×Q16 in TeX