p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16⋊2Q8, C4.7Q32, C42.148D4, (C2×C8).72D4, C4⋊C16.10C2, C2.7(C2×Q32), C8.32(C2×Q8), (C2×C4).154D8, (C4×Q16).7C2, C16⋊3C4.4C2, C8.66(C4○D4), (C2×C16).8C22, (C4×C8).68C22, C8⋊2Q8.12C2, (C2×C8).529C23, C2.Q32.3C2, C22.115(C2×D8), C4.48(C22⋊Q8), C2.15(C16⋊C22), C2.D8.14C22, C2.15(D4⋊Q8), C4.11(C8.C22), (C2×Q16).111C22, (C2×C4).797(C2×D4), SmallGroup(128,959)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.Q32
G = < a,b,c | a4=b16=1, c2=b8, bab-1=a-1, ac=ca, cbc-1=a2b-1 >
Subgroups: 148 in 65 conjugacy classes, 34 normal (22 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, C16, C42, C42, C4⋊C4, C2×C8, Q16, Q16, C2×Q8, C4×C8, Q8⋊C4, C2.D8, C2.D8, C2.D8, C2×C16, C4×Q8, C4⋊Q8, C2×Q16, C2.Q32, C4⋊C16, C16⋊3C4, C4×Q16, C8⋊2Q8, C4.Q32
Quotients: C1, C2, C22, D4, Q8, C23, D8, C2×D4, C2×Q8, C4○D4, Q32, C22⋊Q8, C2×D8, C8.C22, D4⋊Q8, C2×Q32, C16⋊C22, C4.Q32
Character table of C4.Q32
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | -√2 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | symplectic lifted from Q32, Schur index 2 |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | √2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | symplectic lifted from Q32, Schur index 2 |
ρ25 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C16⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 18 92 43)(2 44 93 19)(3 20 94 45)(4 46 95 21)(5 22 96 47)(6 48 81 23)(7 24 82 33)(8 34 83 25)(9 26 84 35)(10 36 85 27)(11 28 86 37)(12 38 87 29)(13 30 88 39)(14 40 89 31)(15 32 90 41)(16 42 91 17)(49 111 80 122)(50 123 65 112)(51 97 66 124)(52 125 67 98)(53 99 68 126)(54 127 69 100)(55 101 70 128)(56 113 71 102)(57 103 72 114)(58 115 73 104)(59 105 74 116)(60 117 75 106)(61 107 76 118)(62 119 77 108)(63 109 78 120)(64 121 79 110)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 73 9 65)(2 57 10 49)(3 71 11 79)(4 55 12 63)(5 69 13 77)(6 53 14 61)(7 67 15 75)(8 51 16 59)(17 116 25 124)(18 104 26 112)(19 114 27 122)(20 102 28 110)(21 128 29 120)(22 100 30 108)(23 126 31 118)(24 98 32 106)(33 125 41 117)(34 97 42 105)(35 123 43 115)(36 111 44 103)(37 121 45 113)(38 109 46 101)(39 119 47 127)(40 107 48 99)(50 92 58 84)(52 90 60 82)(54 88 62 96)(56 86 64 94)(66 91 74 83)(68 89 76 81)(70 87 78 95)(72 85 80 93)
G:=sub<Sym(128)| (1,18,92,43)(2,44,93,19)(3,20,94,45)(4,46,95,21)(5,22,96,47)(6,48,81,23)(7,24,82,33)(8,34,83,25)(9,26,84,35)(10,36,85,27)(11,28,86,37)(12,38,87,29)(13,30,88,39)(14,40,89,31)(15,32,90,41)(16,42,91,17)(49,111,80,122)(50,123,65,112)(51,97,66,124)(52,125,67,98)(53,99,68,126)(54,127,69,100)(55,101,70,128)(56,113,71,102)(57,103,72,114)(58,115,73,104)(59,105,74,116)(60,117,75,106)(61,107,76,118)(62,119,77,108)(63,109,78,120)(64,121,79,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,73,9,65)(2,57,10,49)(3,71,11,79)(4,55,12,63)(5,69,13,77)(6,53,14,61)(7,67,15,75)(8,51,16,59)(17,116,25,124)(18,104,26,112)(19,114,27,122)(20,102,28,110)(21,128,29,120)(22,100,30,108)(23,126,31,118)(24,98,32,106)(33,125,41,117)(34,97,42,105)(35,123,43,115)(36,111,44,103)(37,121,45,113)(38,109,46,101)(39,119,47,127)(40,107,48,99)(50,92,58,84)(52,90,60,82)(54,88,62,96)(56,86,64,94)(66,91,74,83)(68,89,76,81)(70,87,78,95)(72,85,80,93)>;
G:=Group( (1,18,92,43)(2,44,93,19)(3,20,94,45)(4,46,95,21)(5,22,96,47)(6,48,81,23)(7,24,82,33)(8,34,83,25)(9,26,84,35)(10,36,85,27)(11,28,86,37)(12,38,87,29)(13,30,88,39)(14,40,89,31)(15,32,90,41)(16,42,91,17)(49,111,80,122)(50,123,65,112)(51,97,66,124)(52,125,67,98)(53,99,68,126)(54,127,69,100)(55,101,70,128)(56,113,71,102)(57,103,72,114)(58,115,73,104)(59,105,74,116)(60,117,75,106)(61,107,76,118)(62,119,77,108)(63,109,78,120)(64,121,79,110), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,73,9,65)(2,57,10,49)(3,71,11,79)(4,55,12,63)(5,69,13,77)(6,53,14,61)(7,67,15,75)(8,51,16,59)(17,116,25,124)(18,104,26,112)(19,114,27,122)(20,102,28,110)(21,128,29,120)(22,100,30,108)(23,126,31,118)(24,98,32,106)(33,125,41,117)(34,97,42,105)(35,123,43,115)(36,111,44,103)(37,121,45,113)(38,109,46,101)(39,119,47,127)(40,107,48,99)(50,92,58,84)(52,90,60,82)(54,88,62,96)(56,86,64,94)(66,91,74,83)(68,89,76,81)(70,87,78,95)(72,85,80,93) );
G=PermutationGroup([[(1,18,92,43),(2,44,93,19),(3,20,94,45),(4,46,95,21),(5,22,96,47),(6,48,81,23),(7,24,82,33),(8,34,83,25),(9,26,84,35),(10,36,85,27),(11,28,86,37),(12,38,87,29),(13,30,88,39),(14,40,89,31),(15,32,90,41),(16,42,91,17),(49,111,80,122),(50,123,65,112),(51,97,66,124),(52,125,67,98),(53,99,68,126),(54,127,69,100),(55,101,70,128),(56,113,71,102),(57,103,72,114),(58,115,73,104),(59,105,74,116),(60,117,75,106),(61,107,76,118),(62,119,77,108),(63,109,78,120),(64,121,79,110)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,73,9,65),(2,57,10,49),(3,71,11,79),(4,55,12,63),(5,69,13,77),(6,53,14,61),(7,67,15,75),(8,51,16,59),(17,116,25,124),(18,104,26,112),(19,114,27,122),(20,102,28,110),(21,128,29,120),(22,100,30,108),(23,126,31,118),(24,98,32,106),(33,125,41,117),(34,97,42,105),(35,123,43,115),(36,111,44,103),(37,121,45,113),(38,109,46,101),(39,119,47,127),(40,107,48,99),(50,92,58,84),(52,90,60,82),(54,88,62,96),(56,86,64,94),(66,91,74,83),(68,89,76,81),(70,87,78,95),(72,85,80,93)]])
Matrix representation of C4.Q32 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 6 | 9 |
0 | 0 | 11 | 11 |
11 | 4 | 0 | 0 |
13 | 11 | 0 | 0 |
0 | 0 | 15 | 3 |
0 | 0 | 16 | 2 |
12 | 12 | 0 | 0 |
12 | 5 | 0 | 0 |
0 | 0 | 7 | 2 |
0 | 0 | 10 | 10 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,6,11,0,0,9,11],[11,13,0,0,4,11,0,0,0,0,15,16,0,0,3,2],[12,12,0,0,12,5,0,0,0,0,7,10,0,0,2,10] >;
C4.Q32 in GAP, Magma, Sage, TeX
C_4.Q_{32}
% in TeX
G:=Group("C4.Q32");
// GroupNames label
G:=SmallGroup(128,959);
// by ID
G=gap.SmallGroup(128,959);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,504,141,64,422,352,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c|a^4=b^16=1,c^2=b^8,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export