p-group, metabelian, nilpotent (class 4), monomial
Aliases: Q16.5D4, C42.141D4, C4⋊C16⋊8C2, (C2×Q32)⋊4C2, (C2×C4).35D8, C8.75(C2×D4), (C4×Q16)⋊19C2, (C2×C8).175D4, C2.D16.2C2, C2.9(C4○D16), C8.93(C4○D4), (C2×C16).6C22, (C2×SD32).4C2, (C2×D8).4C22, C2.Q32⋊11C2, C2.23(C4⋊D8), C4.54(C4⋊D4), C4.19(C8⋊C22), (C4×C8).104C22, (C2×C8).519C23, C8.12D4.2C2, C22.105(C2×D8), (C2×Q16).5C22, C2.11(Q32⋊C2), C2.D8.161C22, (C2×C4).787(C2×D4), SmallGroup(128,943)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q16.5D4
G = < a,b,c,d | a8=c4=1, b2=d2=a4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a4c-1 >
Subgroups: 204 in 79 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C16, C42, C42, C22⋊C4, C4⋊C4, C2×C8, D8, SD16, Q16, Q16, C2×D4, C2×Q8, C4×C8, Q8⋊C4, C2.D8, C2×C16, SD32, Q32, C4×Q8, C4.4D4, C2×D8, C2×SD16, C2×Q16, C2.D16, C2.Q32, C4⋊C16, C4×Q16, C8.12D4, C2×SD32, C2×Q32, Q16.5D4
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C8⋊C22, C4⋊D8, C4○D16, Q32⋊C2, Q16.5D4
Character table of Q16.5D4
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | -2i | 0 | 2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2i | 0 | -2i | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | -ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165-ζ163 | ζ165+ζ163 | ζ167+ζ16 | complex lifted from C4○D16 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | -ζ165+ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ165-ζ163 | ζ1613+ζ1611 | ζ1615+ζ169 | complex lifted from C4○D16 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167-ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | -ζ167+ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167-ζ16 | ζ1615+ζ169 | ζ165+ζ163 | complex lifted from C4○D16 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | ζ165+ζ163 | ζ1615+ζ169 | -ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | complex lifted from C4○D16 |
ρ27 | 4 | -4 | -4 | 4 | 0 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q32⋊C2, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 25 5 29)(2 32 6 28)(3 31 7 27)(4 30 8 26)(9 19 13 23)(10 18 14 22)(11 17 15 21)(12 24 16 20)(33 59 37 63)(34 58 38 62)(35 57 39 61)(36 64 40 60)(41 51 45 55)(42 50 46 54)(43 49 47 53)(44 56 48 52)
(1 47 15 35)(2 48 16 36)(3 41 9 37)(4 42 10 38)(5 43 11 39)(6 44 12 40)(7 45 13 33)(8 46 14 34)(17 61 29 49)(18 62 30 50)(19 63 31 51)(20 64 32 52)(21 57 25 53)(22 58 26 54)(23 59 27 55)(24 60 28 56)
(1 39 5 35)(2 38 6 34)(3 37 7 33)(4 36 8 40)(9 41 13 45)(10 48 14 44)(11 47 15 43)(12 46 16 42)(17 54 21 50)(18 53 22 49)(19 52 23 56)(20 51 24 55)(25 62 29 58)(26 61 30 57)(27 60 31 64)(28 59 32 63)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,5,29)(2,32,6,28)(3,31,7,27)(4,30,8,26)(9,19,13,23)(10,18,14,22)(11,17,15,21)(12,24,16,20)(33,59,37,63)(34,58,38,62)(35,57,39,61)(36,64,40,60)(41,51,45,55)(42,50,46,54)(43,49,47,53)(44,56,48,52), (1,47,15,35)(2,48,16,36)(3,41,9,37)(4,42,10,38)(5,43,11,39)(6,44,12,40)(7,45,13,33)(8,46,14,34)(17,61,29,49)(18,62,30,50)(19,63,31,51)(20,64,32,52)(21,57,25,53)(22,58,26,54)(23,59,27,55)(24,60,28,56), (1,39,5,35)(2,38,6,34)(3,37,7,33)(4,36,8,40)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(17,54,21,50)(18,53,22,49)(19,52,23,56)(20,51,24,55)(25,62,29,58)(26,61,30,57)(27,60,31,64)(28,59,32,63)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,25,5,29)(2,32,6,28)(3,31,7,27)(4,30,8,26)(9,19,13,23)(10,18,14,22)(11,17,15,21)(12,24,16,20)(33,59,37,63)(34,58,38,62)(35,57,39,61)(36,64,40,60)(41,51,45,55)(42,50,46,54)(43,49,47,53)(44,56,48,52), (1,47,15,35)(2,48,16,36)(3,41,9,37)(4,42,10,38)(5,43,11,39)(6,44,12,40)(7,45,13,33)(8,46,14,34)(17,61,29,49)(18,62,30,50)(19,63,31,51)(20,64,32,52)(21,57,25,53)(22,58,26,54)(23,59,27,55)(24,60,28,56), (1,39,5,35)(2,38,6,34)(3,37,7,33)(4,36,8,40)(9,41,13,45)(10,48,14,44)(11,47,15,43)(12,46,16,42)(17,54,21,50)(18,53,22,49)(19,52,23,56)(20,51,24,55)(25,62,29,58)(26,61,30,57)(27,60,31,64)(28,59,32,63) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,25,5,29),(2,32,6,28),(3,31,7,27),(4,30,8,26),(9,19,13,23),(10,18,14,22),(11,17,15,21),(12,24,16,20),(33,59,37,63),(34,58,38,62),(35,57,39,61),(36,64,40,60),(41,51,45,55),(42,50,46,54),(43,49,47,53),(44,56,48,52)], [(1,47,15,35),(2,48,16,36),(3,41,9,37),(4,42,10,38),(5,43,11,39),(6,44,12,40),(7,45,13,33),(8,46,14,34),(17,61,29,49),(18,62,30,50),(19,63,31,51),(20,64,32,52),(21,57,25,53),(22,58,26,54),(23,59,27,55),(24,60,28,56)], [(1,39,5,35),(2,38,6,34),(3,37,7,33),(4,36,8,40),(9,41,13,45),(10,48,14,44),(11,47,15,43),(12,46,16,42),(17,54,21,50),(18,53,22,49),(19,52,23,56),(20,51,24,55),(25,62,29,58),(26,61,30,57),(27,60,31,64),(28,59,32,63)]])
Matrix representation of Q16.5D4 ►in GL4(𝔽17) generated by
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 7 | 0 | 0 |
7 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 1 | 16 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [14,14,0,0,3,14,0,0,0,0,1,0,0,0,0,1],[1,7,0,0,7,16,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,1,1,0,0,15,16],[4,0,0,0,0,13,0,0,0,0,1,0,0,0,15,16] >;
Q16.5D4 in GAP, Magma, Sage, TeX
Q_{16}._5D_4
% in TeX
G:=Group("Q16.5D4");
// GroupNames label
G:=SmallGroup(128,943);
// by ID
G=gap.SmallGroup(128,943);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,141,512,422,352,1684,438,242,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^4=1,b^2=d^2=a^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^4*c^-1>;
// generators/relations
Export