Copied to
clipboard

G = Q165C8order 128 = 27

5th semidirect product of Q16 and C8 acting via C8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q165C8, C42.636C23, C8.4(C2×C8), C2.8(C8×D4), Q8⋊C8.1C2, (C8×Q8).3C2, Q8.2(C2×C8), C8⋊C8.1C2, C82C8.5C2, (C2×C8).305D4, C2.D8.18C4, C4.11(C8○D4), C4.11(C22×C8), (C4×C8).12C22, (C2×Q16).11C4, (C4×Q16).15C2, C22.81(C4×D4), C2.2(C8.26D4), C4⋊C8.274C22, Q8⋊C4.10C4, C2.1(Q16⋊C4), (C4×Q8).258C22, C4.136(C8.C22), C4⋊C4.130(C2×C4), (C2×C8).124(C2×C4), (C2×C4).1472(C2×D4), (C2×Q8).134(C2×C4), (C2×C4).497(C4○D4), (C2×C4).328(C22×C4), SmallGroup(128,311)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — Q165C8
C1C2C22C2×C4C42C4×C8C8×Q8 — Q165C8
C1C2C4 — Q165C8
C1C2×C4C4×C8 — Q165C8
C1C22C22C42 — Q165C8

Generators and relations for Q165C8
 G = < a,b,c | a8=c8=1, b2=a4, bab-1=a-1, cac-1=a5, bc=cb >

Subgroups: 120 in 80 conjugacy classes, 50 normal (22 characteristic)
C1, C2, C4, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, Q16, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C2×Q16, C8⋊C8, Q8⋊C8, C82C8, C4×Q16, C8×Q8, Q165C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, C22×C4, C2×D4, C4○D4, C4×D4, C22×C8, C8○D4, C8.C22, C8×D4, Q16⋊C4, C8.26D4, Q165C8

Smallest permutation representation of Q165C8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 30 5 26)(2 29 6 25)(3 28 7 32)(4 27 8 31)(9 37 13 33)(10 36 14 40)(11 35 15 39)(12 34 16 38)(17 62 21 58)(18 61 22 57)(19 60 23 64)(20 59 24 63)(41 67 45 71)(42 66 46 70)(43 65 47 69)(44 72 48 68)(49 74 53 78)(50 73 54 77)(51 80 55 76)(52 79 56 75)(81 109 85 105)(82 108 86 112)(83 107 87 111)(84 106 88 110)(89 118 93 114)(90 117 94 113)(91 116 95 120)(92 115 96 119)(97 122 101 126)(98 121 102 125)(99 128 103 124)(100 127 104 123)
(1 63 55 72 128 114 10 105)(2 60 56 69 121 119 11 110)(3 57 49 66 122 116 12 107)(4 62 50 71 123 113 13 112)(5 59 51 68 124 118 14 109)(6 64 52 65 125 115 15 106)(7 61 53 70 126 120 16 111)(8 58 54 67 127 117 9 108)(17 77 45 104 94 37 86 31)(18 74 46 101 95 34 87 28)(19 79 47 98 96 39 88 25)(20 76 48 103 89 36 81 30)(21 73 41 100 90 33 82 27)(22 78 42 97 91 38 83 32)(23 75 43 102 92 35 84 29)(24 80 44 99 93 40 85 26)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,30,5,26)(2,29,6,25)(3,28,7,32)(4,27,8,31)(9,37,13,33)(10,36,14,40)(11,35,15,39)(12,34,16,38)(17,62,21,58)(18,61,22,57)(19,60,23,64)(20,59,24,63)(41,67,45,71)(42,66,46,70)(43,65,47,69)(44,72,48,68)(49,74,53,78)(50,73,54,77)(51,80,55,76)(52,79,56,75)(81,109,85,105)(82,108,86,112)(83,107,87,111)(84,106,88,110)(89,118,93,114)(90,117,94,113)(91,116,95,120)(92,115,96,119)(97,122,101,126)(98,121,102,125)(99,128,103,124)(100,127,104,123), (1,63,55,72,128,114,10,105)(2,60,56,69,121,119,11,110)(3,57,49,66,122,116,12,107)(4,62,50,71,123,113,13,112)(5,59,51,68,124,118,14,109)(6,64,52,65,125,115,15,106)(7,61,53,70,126,120,16,111)(8,58,54,67,127,117,9,108)(17,77,45,104,94,37,86,31)(18,74,46,101,95,34,87,28)(19,79,47,98,96,39,88,25)(20,76,48,103,89,36,81,30)(21,73,41,100,90,33,82,27)(22,78,42,97,91,38,83,32)(23,75,43,102,92,35,84,29)(24,80,44,99,93,40,85,26)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,30,5,26)(2,29,6,25)(3,28,7,32)(4,27,8,31)(9,37,13,33)(10,36,14,40)(11,35,15,39)(12,34,16,38)(17,62,21,58)(18,61,22,57)(19,60,23,64)(20,59,24,63)(41,67,45,71)(42,66,46,70)(43,65,47,69)(44,72,48,68)(49,74,53,78)(50,73,54,77)(51,80,55,76)(52,79,56,75)(81,109,85,105)(82,108,86,112)(83,107,87,111)(84,106,88,110)(89,118,93,114)(90,117,94,113)(91,116,95,120)(92,115,96,119)(97,122,101,126)(98,121,102,125)(99,128,103,124)(100,127,104,123), (1,63,55,72,128,114,10,105)(2,60,56,69,121,119,11,110)(3,57,49,66,122,116,12,107)(4,62,50,71,123,113,13,112)(5,59,51,68,124,118,14,109)(6,64,52,65,125,115,15,106)(7,61,53,70,126,120,16,111)(8,58,54,67,127,117,9,108)(17,77,45,104,94,37,86,31)(18,74,46,101,95,34,87,28)(19,79,47,98,96,39,88,25)(20,76,48,103,89,36,81,30)(21,73,41,100,90,33,82,27)(22,78,42,97,91,38,83,32)(23,75,43,102,92,35,84,29)(24,80,44,99,93,40,85,26) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,30,5,26),(2,29,6,25),(3,28,7,32),(4,27,8,31),(9,37,13,33),(10,36,14,40),(11,35,15,39),(12,34,16,38),(17,62,21,58),(18,61,22,57),(19,60,23,64),(20,59,24,63),(41,67,45,71),(42,66,46,70),(43,65,47,69),(44,72,48,68),(49,74,53,78),(50,73,54,77),(51,80,55,76),(52,79,56,75),(81,109,85,105),(82,108,86,112),(83,107,87,111),(84,106,88,110),(89,118,93,114),(90,117,94,113),(91,116,95,120),(92,115,96,119),(97,122,101,126),(98,121,102,125),(99,128,103,124),(100,127,104,123)], [(1,63,55,72,128,114,10,105),(2,60,56,69,121,119,11,110),(3,57,49,66,122,116,12,107),(4,62,50,71,123,113,13,112),(5,59,51,68,124,118,14,109),(6,64,52,65,125,115,15,106),(7,61,53,70,126,120,16,111),(8,58,54,67,127,117,9,108),(17,77,45,104,94,37,86,31),(18,74,46,101,95,34,87,28),(19,79,47,98,96,39,88,25),(20,76,48,103,89,36,81,30),(21,73,41,100,90,33,82,27),(22,78,42,97,91,38,83,32),(23,75,43,102,92,35,84,29),(24,80,44,99,93,40,85,26)]])

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H4I···4P8A···8H8I···8X
order1222444444444···48···88···8
size1111111122224···42···24···4

44 irreducible representations

dim111111111122244
type+++++++-
imageC1C2C2C2C2C2C4C4C4C8D4C4○D4C8○D4C8.C22C8.26D4
kernelQ165C8C8⋊C8Q8⋊C8C82C8C4×Q16C8×Q8Q8⋊C4C2.D8C2×Q16Q16C2×C8C2×C4C4C4C2
# reps1121124221622422

Matrix representation of Q165C8 in GL6(𝔽17)

740000
13100000
0013113
001613141
00412416
005414
,
0160000
1600000
00216612
0016151211
00103216
00371615
,
900000
090000
000010
000001
0013000
0001300

G:=sub<GL(6,GF(17))| [7,13,0,0,0,0,4,10,0,0,0,0,0,0,13,16,4,5,0,0,1,13,12,4,0,0,1,14,4,1,0,0,3,1,16,4],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,2,16,10,3,0,0,16,15,3,7,0,0,6,12,2,16,0,0,12,11,16,15],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,1,0,0,0,0,0,0,1,0,0] >;

Q165C8 in GAP, Magma, Sage, TeX

Q_{16}\rtimes_5C_8
% in TeX

G:=Group("Q16:5C8");
// GroupNames label

G:=SmallGroup(128,311);
// by ID

G=gap.SmallGroup(128,311);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,758,100,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=c^8=1,b^2=a^4,b*a*b^-1=a^-1,c*a*c^-1=a^5,b*c=c*b>;
// generators/relations

׿
×
𝔽