Copied to
clipboard

G = C23.458C24order 128 = 27

175th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.458C24, C24.330C23, C22.1862- 1+4, C22.2432+ 1+4, C4⋊C4.237D4, C2.78(D45D4), C2.40(Q85D4), (C22×C4).98C23, C23.Q830C2, C23.8Q866C2, C23.155(C4○D4), (C2×C42).562C22, (C23×C4).116C22, C22.309(C22×D4), C24.C2284C2, C23.10D4.20C2, (C22×D4).172C22, C23.83C2337C2, C23.65C2388C2, C24.3C22.46C2, C2.C42.195C22, C2.38(C22.26C24), C2.63(C22.46C24), C2.55(C22.47C24), C2.26(C22.33C24), C2.80(C23.36C23), (C4×C4⋊C4)⋊94C2, (C2×C4).81(C2×D4), (C4×C22⋊C4)⋊88C2, (C2×C42.C2)⋊12C2, (C2×C4).525(C4○D4), (C2×C4⋊C4).873C22, C22.334(C2×C4○D4), (C2×C22⋊C4).182C22, (C2×C22.D4).18C2, SmallGroup(128,1290)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.458C24
C1C2C22C23C22×C4C23×C4C4×C22⋊C4 — C23.458C24
C1C23 — C23.458C24
C1C23 — C23.458C24
C1C23 — C23.458C24

Generators and relations for C23.458C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=b, f2=bcd, g2=c, ab=ba, eae-1=ac=ca, faf-1=ad=da, ag=ga, bc=cb, bd=db, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >

Subgroups: 484 in 255 conjugacy classes, 100 normal (82 characteristic)
C1, C2 [×7], C2 [×3], C4 [×19], C22 [×7], C22 [×17], C2×C4 [×12], C2×C4 [×37], D4 [×4], C23, C23 [×2], C23 [×13], C42 [×6], C22⋊C4 [×21], C4⋊C4 [×4], C4⋊C4 [×17], C22×C4 [×13], C22×C4 [×5], C2×D4 [×5], C24 [×2], C2.C42 [×8], C2×C42 [×4], C2×C22⋊C4 [×11], C2×C4⋊C4 [×10], C22.D4 [×4], C42.C2 [×4], C23×C4, C22×D4, C4×C22⋊C4, C4×C4⋊C4, C23.8Q8, C24.C22 [×4], C23.65C23, C24.3C22, C23.10D4, C23.Q8 [×2], C23.83C23, C2×C22.D4, C2×C42.C2, C23.458C24
Quotients: C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×8], C24, C22×D4, C2×C4○D4 [×4], 2+ 1+4, 2- 1+4, C23.36C23, C22.26C24, C22.33C24, D45D4, Q85D4, C22.46C24, C22.47C24, C23.458C24

Smallest permutation representation of C23.458C24
On 64 points
Generators in S64
(1 24)(2 10)(3 22)(4 12)(5 59)(6 29)(7 57)(8 31)(9 17)(11 19)(13 45)(14 42)(15 47)(16 44)(18 21)(20 23)(25 61)(26 35)(27 63)(28 33)(30 39)(32 37)(34 54)(36 56)(38 60)(40 58)(41 52)(43 50)(46 49)(48 51)(53 64)(55 62)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 17)(2 18)(3 19)(4 20)(5 37)(6 38)(7 39)(8 40)(9 24)(10 21)(11 22)(12 23)(13 52)(14 49)(15 50)(16 51)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)(41 45)(42 46)(43 47)(44 48)
(1 47)(2 48)(3 45)(4 46)(5 35)(6 36)(7 33)(8 34)(9 50)(10 51)(11 52)(12 49)(13 22)(14 23)(15 24)(16 21)(17 43)(18 44)(19 41)(20 42)(25 58)(26 59)(27 60)(28 57)(29 56)(30 53)(31 54)(32 55)(37 62)(38 63)(39 64)(40 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 26 41 30)(2 25 42 29)(3 28 43 32)(4 27 44 31)(5 52 64 24)(6 51 61 23)(7 50 62 22)(8 49 63 21)(9 37 13 33)(10 40 14 36)(11 39 15 35)(12 38 16 34)(17 55 45 57)(18 54 46 60)(19 53 47 59)(20 56 48 58)
(1 21 17 10)(2 24 18 9)(3 23 19 12)(4 22 20 11)(5 54 37 25)(6 53 38 28)(7 56 39 27)(8 55 40 26)(13 42 52 46)(14 41 49 45)(15 44 50 48)(16 43 51 47)(29 64 60 33)(30 63 57 36)(31 62 58 35)(32 61 59 34)

G:=sub<Sym(64)| (1,24)(2,10)(3,22)(4,12)(5,59)(6,29)(7,57)(8,31)(9,17)(11,19)(13,45)(14,42)(15,47)(16,44)(18,21)(20,23)(25,61)(26,35)(27,63)(28,33)(30,39)(32,37)(34,54)(36,56)(38,60)(40,58)(41,52)(43,50)(46,49)(48,51)(53,64)(55,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,17)(2,18)(3,19)(4,20)(5,37)(6,38)(7,39)(8,40)(9,24)(10,21)(11,22)(12,23)(13,52)(14,49)(15,50)(16,51)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63)(41,45)(42,46)(43,47)(44,48), (1,47)(2,48)(3,45)(4,46)(5,35)(6,36)(7,33)(8,34)(9,50)(10,51)(11,52)(12,49)(13,22)(14,23)(15,24)(16,21)(17,43)(18,44)(19,41)(20,42)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(37,62)(38,63)(39,64)(40,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,26,41,30)(2,25,42,29)(3,28,43,32)(4,27,44,31)(5,52,64,24)(6,51,61,23)(7,50,62,22)(8,49,63,21)(9,37,13,33)(10,40,14,36)(11,39,15,35)(12,38,16,34)(17,55,45,57)(18,54,46,60)(19,53,47,59)(20,56,48,58), (1,21,17,10)(2,24,18,9)(3,23,19,12)(4,22,20,11)(5,54,37,25)(6,53,38,28)(7,56,39,27)(8,55,40,26)(13,42,52,46)(14,41,49,45)(15,44,50,48)(16,43,51,47)(29,64,60,33)(30,63,57,36)(31,62,58,35)(32,61,59,34)>;

G:=Group( (1,24)(2,10)(3,22)(4,12)(5,59)(6,29)(7,57)(8,31)(9,17)(11,19)(13,45)(14,42)(15,47)(16,44)(18,21)(20,23)(25,61)(26,35)(27,63)(28,33)(30,39)(32,37)(34,54)(36,56)(38,60)(40,58)(41,52)(43,50)(46,49)(48,51)(53,64)(55,62), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,17)(2,18)(3,19)(4,20)(5,37)(6,38)(7,39)(8,40)(9,24)(10,21)(11,22)(12,23)(13,52)(14,49)(15,50)(16,51)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63)(41,45)(42,46)(43,47)(44,48), (1,47)(2,48)(3,45)(4,46)(5,35)(6,36)(7,33)(8,34)(9,50)(10,51)(11,52)(12,49)(13,22)(14,23)(15,24)(16,21)(17,43)(18,44)(19,41)(20,42)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(37,62)(38,63)(39,64)(40,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,26,41,30)(2,25,42,29)(3,28,43,32)(4,27,44,31)(5,52,64,24)(6,51,61,23)(7,50,62,22)(8,49,63,21)(9,37,13,33)(10,40,14,36)(11,39,15,35)(12,38,16,34)(17,55,45,57)(18,54,46,60)(19,53,47,59)(20,56,48,58), (1,21,17,10)(2,24,18,9)(3,23,19,12)(4,22,20,11)(5,54,37,25)(6,53,38,28)(7,56,39,27)(8,55,40,26)(13,42,52,46)(14,41,49,45)(15,44,50,48)(16,43,51,47)(29,64,60,33)(30,63,57,36)(31,62,58,35)(32,61,59,34) );

G=PermutationGroup([(1,24),(2,10),(3,22),(4,12),(5,59),(6,29),(7,57),(8,31),(9,17),(11,19),(13,45),(14,42),(15,47),(16,44),(18,21),(20,23),(25,61),(26,35),(27,63),(28,33),(30,39),(32,37),(34,54),(36,56),(38,60),(40,58),(41,52),(43,50),(46,49),(48,51),(53,64),(55,62)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,17),(2,18),(3,19),(4,20),(5,37),(6,38),(7,39),(8,40),(9,24),(10,21),(11,22),(12,23),(13,52),(14,49),(15,50),(16,51),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63),(41,45),(42,46),(43,47),(44,48)], [(1,47),(2,48),(3,45),(4,46),(5,35),(6,36),(7,33),(8,34),(9,50),(10,51),(11,52),(12,49),(13,22),(14,23),(15,24),(16,21),(17,43),(18,44),(19,41),(20,42),(25,58),(26,59),(27,60),(28,57),(29,56),(30,53),(31,54),(32,55),(37,62),(38,63),(39,64),(40,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,26,41,30),(2,25,42,29),(3,28,43,32),(4,27,44,31),(5,52,64,24),(6,51,61,23),(7,50,62,22),(8,49,63,21),(9,37,13,33),(10,40,14,36),(11,39,15,35),(12,38,16,34),(17,55,45,57),(18,54,46,60),(19,53,47,59),(20,56,48,58)], [(1,21,17,10),(2,24,18,9),(3,23,19,12),(4,22,20,11),(5,54,37,25),(6,53,38,28),(7,56,39,27),(8,55,40,26),(13,42,52,46),(14,41,49,45),(15,44,50,48),(16,43,51,47),(29,64,60,33),(30,63,57,36),(31,62,58,35),(32,61,59,34)])

38 conjugacy classes

class 1 2A···2G2H2I2J4A···4H4I···4X4Y4Z4AA
order12···22224···44···4444
size11···14482···24···4888

38 irreducible representations

dim11111111111122244
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4C4○D4C4○D42+ 1+42- 1+4
kernelC23.458C24C4×C22⋊C4C4×C4⋊C4C23.8Q8C24.C22C23.65C23C24.3C22C23.10D4C23.Q8C23.83C23C2×C22.D4C2×C42.C2C4⋊C4C2×C4C23C22C22
# reps111141112111412411

Matrix representation of C23.458C24 in GL6(𝔽5)

100000
340000
000100
001000
000002
000030
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
000200
003000
000020
000003
,
330000
020000
003000
000300
000002
000030
,
100000
010000
002000
000200
000001
000040

G:=sub<GL(6,GF(5))| [1,3,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[3,0,0,0,0,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C23.458C24 in GAP, Magma, Sage, TeX

C_2^3._{458}C_2^4
% in TeX

G:=Group("C2^3.458C2^4");
// GroupNames label

G:=SmallGroup(128,1290);
// by ID

G=gap.SmallGroup(128,1290);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,792,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b,f^2=b*c*d,g^2=c,a*b=b*a,e*a*e^-1=a*c=c*a,f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations

׿
×
𝔽