Copied to
clipboard

G = C23.640C24order 128 = 27

357th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.77C23, C23.640C24, C22.4132+ 1+4, C22.3122- 1+4, C23.Q876C2, C23.4Q855C2, C23.184(C4○D4), C23.34D452C2, (C2×C42).687C22, (C23×C4).482C22, (C22×C4).202C23, C23.7Q8100C2, C23.11D4105C2, C23.23D4.61C2, C23.10D4.53C2, (C22×D4).261C22, C24.C22153C2, C24.3C22.68C2, C23.63C23156C2, C23.81C23106C2, C2.92(C22.45C24), C2.C42.344C22, C2.49(C22.34C24), C2.59(C22.50C24), C2.26(C22.56C24), C2.84(C22.33C24), (C2×C4).214(C4○D4), (C2×C4⋊C4).451C22, C22.501(C2×C4○D4), (C2×C22⋊C4).300C22, SmallGroup(128,1472)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.640C24
C1C2C22C23C24C23×C4C23.34D4 — C23.640C24
C1C23 — C23.640C24
C1C23 — C23.640C24
C1C23 — C23.640C24

Generators and relations for C23.640C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=ca=ac, e2=ba=ab, f2=a, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >

Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×3], C4 [×15], C22 [×7], C22 [×17], C2×C4 [×4], C2×C4 [×41], D4 [×4], C23, C23 [×2], C23 [×13], C42 [×2], C22⋊C4 [×13], C4⋊C4 [×11], C22×C4 [×13], C22×C4 [×5], C2×D4 [×5], C24 [×2], C2.C42 [×12], C2×C42 [×2], C2×C22⋊C4 [×11], C2×C4⋊C4 [×8], C23×C4, C22×D4, C23.7Q8, C23.34D4, C23.23D4, C23.63C23 [×3], C24.C22 [×2], C24.3C22, C23.10D4, C23.Q8, C23.11D4 [×2], C23.81C23, C23.4Q8, C23.640C24
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ 1+4 [×3], 2- 1+4, C22.33C24, C22.34C24 [×2], C22.45C24 [×2], C22.50C24, C22.56C24, C23.640C24

Smallest permutation representation of C23.640C24
On 64 points
Generators in S64
(1 17)(2 18)(3 19)(4 20)(5 52)(6 49)(7 50)(8 51)(9 59)(10 60)(11 57)(12 58)(13 47)(14 48)(15 45)(16 46)(21 34)(22 35)(23 36)(24 33)(25 38)(26 39)(27 40)(28 37)(29 43)(30 44)(31 41)(32 42)(53 63)(54 64)(55 61)(56 62)
(1 55)(2 56)(3 53)(4 54)(5 35)(6 36)(7 33)(8 34)(9 42)(10 43)(11 44)(12 41)(13 25)(14 26)(15 27)(16 28)(17 61)(18 62)(19 63)(20 64)(21 51)(22 52)(23 49)(24 50)(29 60)(30 57)(31 58)(32 59)(37 46)(38 47)(39 48)(40 45)
(1 19)(2 20)(3 17)(4 18)(5 50)(6 51)(7 52)(8 49)(9 57)(10 58)(11 59)(12 60)(13 45)(14 46)(15 47)(16 48)(21 36)(22 33)(23 34)(24 35)(25 40)(26 37)(27 38)(28 39)(29 41)(30 42)(31 43)(32 44)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 46 61 28)(2 13 62 38)(3 48 63 26)(4 15 64 40)(5 9 22 32)(6 60 23 43)(7 11 24 30)(8 58 21 41)(10 36 29 49)(12 34 31 51)(14 53 39 19)(16 55 37 17)(18 47 56 25)(20 45 54 27)(33 44 50 57)(35 42 52 59)
(1 47 17 13)(2 39 18 26)(3 45 19 15)(4 37 20 28)(5 43 52 29)(6 11 49 57)(7 41 50 31)(8 9 51 59)(10 22 60 35)(12 24 58 33)(14 56 48 62)(16 54 46 64)(21 32 34 42)(23 30 36 44)(25 55 38 61)(27 53 40 63)
(1 50)(2 34)(3 52)(4 36)(5 19)(6 54)(7 17)(8 56)(9 48)(10 27)(11 46)(12 25)(13 41)(14 59)(15 43)(16 57)(18 21)(20 23)(22 53)(24 55)(26 32)(28 30)(29 45)(31 47)(33 61)(35 63)(37 44)(38 58)(39 42)(40 60)(49 64)(51 62)

G:=sub<Sym(64)| (1,17)(2,18)(3,19)(4,20)(5,52)(6,49)(7,50)(8,51)(9,59)(10,60)(11,57)(12,58)(13,47)(14,48)(15,45)(16,46)(21,34)(22,35)(23,36)(24,33)(25,38)(26,39)(27,40)(28,37)(29,43)(30,44)(31,41)(32,42)(53,63)(54,64)(55,61)(56,62), (1,55)(2,56)(3,53)(4,54)(5,35)(6,36)(7,33)(8,34)(9,42)(10,43)(11,44)(12,41)(13,25)(14,26)(15,27)(16,28)(17,61)(18,62)(19,63)(20,64)(21,51)(22,52)(23,49)(24,50)(29,60)(30,57)(31,58)(32,59)(37,46)(38,47)(39,48)(40,45), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,57)(10,58)(11,59)(12,60)(13,45)(14,46)(15,47)(16,48)(21,36)(22,33)(23,34)(24,35)(25,40)(26,37)(27,38)(28,39)(29,41)(30,42)(31,43)(32,44)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,46,61,28)(2,13,62,38)(3,48,63,26)(4,15,64,40)(5,9,22,32)(6,60,23,43)(7,11,24,30)(8,58,21,41)(10,36,29,49)(12,34,31,51)(14,53,39,19)(16,55,37,17)(18,47,56,25)(20,45,54,27)(33,44,50,57)(35,42,52,59), (1,47,17,13)(2,39,18,26)(3,45,19,15)(4,37,20,28)(5,43,52,29)(6,11,49,57)(7,41,50,31)(8,9,51,59)(10,22,60,35)(12,24,58,33)(14,56,48,62)(16,54,46,64)(21,32,34,42)(23,30,36,44)(25,55,38,61)(27,53,40,63), (1,50)(2,34)(3,52)(4,36)(5,19)(6,54)(7,17)(8,56)(9,48)(10,27)(11,46)(12,25)(13,41)(14,59)(15,43)(16,57)(18,21)(20,23)(22,53)(24,55)(26,32)(28,30)(29,45)(31,47)(33,61)(35,63)(37,44)(38,58)(39,42)(40,60)(49,64)(51,62)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,52)(6,49)(7,50)(8,51)(9,59)(10,60)(11,57)(12,58)(13,47)(14,48)(15,45)(16,46)(21,34)(22,35)(23,36)(24,33)(25,38)(26,39)(27,40)(28,37)(29,43)(30,44)(31,41)(32,42)(53,63)(54,64)(55,61)(56,62), (1,55)(2,56)(3,53)(4,54)(5,35)(6,36)(7,33)(8,34)(9,42)(10,43)(11,44)(12,41)(13,25)(14,26)(15,27)(16,28)(17,61)(18,62)(19,63)(20,64)(21,51)(22,52)(23,49)(24,50)(29,60)(30,57)(31,58)(32,59)(37,46)(38,47)(39,48)(40,45), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,57)(10,58)(11,59)(12,60)(13,45)(14,46)(15,47)(16,48)(21,36)(22,33)(23,34)(24,35)(25,40)(26,37)(27,38)(28,39)(29,41)(30,42)(31,43)(32,44)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,46,61,28)(2,13,62,38)(3,48,63,26)(4,15,64,40)(5,9,22,32)(6,60,23,43)(7,11,24,30)(8,58,21,41)(10,36,29,49)(12,34,31,51)(14,53,39,19)(16,55,37,17)(18,47,56,25)(20,45,54,27)(33,44,50,57)(35,42,52,59), (1,47,17,13)(2,39,18,26)(3,45,19,15)(4,37,20,28)(5,43,52,29)(6,11,49,57)(7,41,50,31)(8,9,51,59)(10,22,60,35)(12,24,58,33)(14,56,48,62)(16,54,46,64)(21,32,34,42)(23,30,36,44)(25,55,38,61)(27,53,40,63), (1,50)(2,34)(3,52)(4,36)(5,19)(6,54)(7,17)(8,56)(9,48)(10,27)(11,46)(12,25)(13,41)(14,59)(15,43)(16,57)(18,21)(20,23)(22,53)(24,55)(26,32)(28,30)(29,45)(31,47)(33,61)(35,63)(37,44)(38,58)(39,42)(40,60)(49,64)(51,62) );

G=PermutationGroup([(1,17),(2,18),(3,19),(4,20),(5,52),(6,49),(7,50),(8,51),(9,59),(10,60),(11,57),(12,58),(13,47),(14,48),(15,45),(16,46),(21,34),(22,35),(23,36),(24,33),(25,38),(26,39),(27,40),(28,37),(29,43),(30,44),(31,41),(32,42),(53,63),(54,64),(55,61),(56,62)], [(1,55),(2,56),(3,53),(4,54),(5,35),(6,36),(7,33),(8,34),(9,42),(10,43),(11,44),(12,41),(13,25),(14,26),(15,27),(16,28),(17,61),(18,62),(19,63),(20,64),(21,51),(22,52),(23,49),(24,50),(29,60),(30,57),(31,58),(32,59),(37,46),(38,47),(39,48),(40,45)], [(1,19),(2,20),(3,17),(4,18),(5,50),(6,51),(7,52),(8,49),(9,57),(10,58),(11,59),(12,60),(13,45),(14,46),(15,47),(16,48),(21,36),(22,33),(23,34),(24,35),(25,40),(26,37),(27,38),(28,39),(29,41),(30,42),(31,43),(32,44),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,46,61,28),(2,13,62,38),(3,48,63,26),(4,15,64,40),(5,9,22,32),(6,60,23,43),(7,11,24,30),(8,58,21,41),(10,36,29,49),(12,34,31,51),(14,53,39,19),(16,55,37,17),(18,47,56,25),(20,45,54,27),(33,44,50,57),(35,42,52,59)], [(1,47,17,13),(2,39,18,26),(3,45,19,15),(4,37,20,28),(5,43,52,29),(6,11,49,57),(7,41,50,31),(8,9,51,59),(10,22,60,35),(12,24,58,33),(14,56,48,62),(16,54,46,64),(21,32,34,42),(23,30,36,44),(25,55,38,61),(27,53,40,63)], [(1,50),(2,34),(3,52),(4,36),(5,19),(6,54),(7,17),(8,56),(9,48),(10,27),(11,46),(12,25),(13,41),(14,59),(15,43),(16,57),(18,21),(20,23),(22,53),(24,55),(26,32),(28,30),(29,45),(31,47),(33,61),(35,63),(37,44),(38,58),(39,42),(40,60),(49,64),(51,62)])

32 conjugacy classes

class 1 2A···2G2H2I2J4A···4P4Q···4U
order12···22224···44···4
size11···14484···48···8

32 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC23.640C24C23.7Q8C23.34D4C23.23D4C23.63C23C24.C22C24.3C22C23.10D4C23.Q8C23.11D4C23.81C23C23.4Q8C2×C4C23C22C22
# reps1111321112118431

Matrix representation of C23.640C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
320000
020000
003000
000300
000022
000013
,
410000
310000
000300
002000
000030
000003
,
300000
030000
000100
001000
000044
000001
,
400000
310000
004000
000400
000044
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,2,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,1,0,0,0,0,2,3],[4,3,0,0,0,0,1,1,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,4,1],[4,3,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,4,1] >;

C23.640C24 in GAP, Magma, Sage, TeX

C_2^3._{640}C_2^4
% in TeX

G:=Group("C2^3.640C2^4");
// GroupNames label

G:=SmallGroup(128,1472);
// by ID

G=gap.SmallGroup(128,1472);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,344,758,723,100,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c*a=a*c,e^2=b*a=a*b,f^2=a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽