Copied to
clipboard

G = C23.681C24order 128 = 27

398th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.89C23, C23.681C24, C22.3452- 1+4, C22.4542+ 1+4, C428C468C2, C23.98(C4○D4), C23.Q885C2, (C23×C4).493C22, (C22×C4).595C23, (C2×C42).107C22, C23.7Q8110C2, C23.8Q8135C2, C23.11D4118C2, C23.10D4.62C2, C23.23D4.72C2, (C22×D4).278C22, C24.C22167C2, C23.83C23117C2, C23.63C23182C2, C23.81C23124C2, C2.101(C22.32C24), C2.C42.385C22, C2.43(C22.49C24), C2.39(C22.56C24), C2.117(C22.46C24), C2.110(C22.47C24), C2.101(C22.33C24), (C2×C4).468(C4○D4), (C2×C4⋊C4).491C22, C22.542(C2×C4○D4), (C2×C22⋊C4).317C22, SmallGroup(128,1513)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.681C24
C1C2C22C23C22×C4C2×C42C24.C22 — C23.681C24
C1C23 — C23.681C24
C1C23 — C23.681C24
C1C23 — C23.681C24

Generators and relations for C23.681C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=1, d2=cb=bc, f2=a, g2=ba=ab, ac=ca, ede=ad=da, geg-1=ae=ea, af=fa, ag=ga, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×3], C4 [×15], C22 [×7], C22 [×17], C2×C4 [×4], C2×C4 [×41], D4 [×4], C23, C23 [×2], C23 [×13], C42 [×3], C22⋊C4 [×16], C4⋊C4 [×9], C22×C4 [×13], C22×C4 [×4], C2×D4 [×4], C24 [×2], C2.C42 [×12], C2×C42 [×2], C2×C22⋊C4 [×11], C2×C4⋊C4 [×8], C23×C4, C22×D4, C23.7Q8, C428C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22 [×4], C23.10D4 [×2], C23.Q8, C23.11D4, C23.81C23, C23.83C23, C23.681C24
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ 1+4 [×3], 2- 1+4, C22.32C24 [×2], C22.33C24, C22.46C24, C22.47C24, C22.49C24, C22.56C24, C23.681C24

Smallest permutation representation of C23.681C24
On 64 points
Generators in S64
(1 16)(2 13)(3 14)(4 15)(5 48)(6 45)(7 46)(8 47)(9 54)(10 55)(11 56)(12 53)(17 57)(18 58)(19 59)(20 60)(21 33)(22 34)(23 35)(24 36)(25 43)(26 44)(27 41)(28 42)(29 37)(30 38)(31 39)(32 40)(49 64)(50 61)(51 62)(52 63)
(1 21)(2 22)(3 23)(4 24)(5 30)(6 31)(7 32)(8 29)(9 41)(10 42)(11 43)(12 44)(13 34)(14 35)(15 36)(16 33)(17 61)(18 62)(19 63)(20 64)(25 56)(26 53)(27 54)(28 55)(37 47)(38 48)(39 45)(40 46)(49 60)(50 57)(51 58)(52 59)
(1 23)(2 24)(3 21)(4 22)(5 32)(6 29)(7 30)(8 31)(9 43)(10 44)(11 41)(12 42)(13 36)(14 33)(15 34)(16 35)(17 63)(18 64)(19 61)(20 62)(25 54)(26 55)(27 56)(28 53)(37 45)(38 46)(39 47)(40 48)(49 58)(50 59)(51 60)(52 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 46)(2 8)(3 48)(4 6)(5 14)(7 16)(9 57)(10 18)(11 59)(12 20)(13 47)(15 45)(17 54)(19 56)(21 40)(22 29)(23 38)(24 31)(25 63)(26 49)(27 61)(28 51)(30 35)(32 33)(34 37)(36 39)(41 50)(42 62)(43 52)(44 64)(53 60)(55 58)
(1 47 16 8)(2 38 13 30)(3 45 14 6)(4 40 15 32)(5 22 48 34)(7 24 46 36)(9 20 54 60)(10 61 55 50)(11 18 56 58)(12 63 53 52)(17 28 57 42)(19 26 59 44)(21 37 33 29)(23 39 35 31)(25 51 43 62)(27 49 41 64)
(1 50 33 17)(2 18 34 51)(3 52 35 19)(4 20 36 49)(5 43 38 56)(6 53 39 44)(7 41 40 54)(8 55 37 42)(9 46 27 32)(10 29 28 47)(11 48 25 30)(12 31 26 45)(13 58 22 62)(14 63 23 59)(15 60 24 64)(16 61 21 57)

G:=sub<Sym(64)| (1,16)(2,13)(3,14)(4,15)(5,48)(6,45)(7,46)(8,47)(9,54)(10,55)(11,56)(12,53)(17,57)(18,58)(19,59)(20,60)(21,33)(22,34)(23,35)(24,36)(25,43)(26,44)(27,41)(28,42)(29,37)(30,38)(31,39)(32,40)(49,64)(50,61)(51,62)(52,63), (1,21)(2,22)(3,23)(4,24)(5,30)(6,31)(7,32)(8,29)(9,41)(10,42)(11,43)(12,44)(13,34)(14,35)(15,36)(16,33)(17,61)(18,62)(19,63)(20,64)(25,56)(26,53)(27,54)(28,55)(37,47)(38,48)(39,45)(40,46)(49,60)(50,57)(51,58)(52,59), (1,23)(2,24)(3,21)(4,22)(5,32)(6,29)(7,30)(8,31)(9,43)(10,44)(11,41)(12,42)(13,36)(14,33)(15,34)(16,35)(17,63)(18,64)(19,61)(20,62)(25,54)(26,55)(27,56)(28,53)(37,45)(38,46)(39,47)(40,48)(49,58)(50,59)(51,60)(52,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,46)(2,8)(3,48)(4,6)(5,14)(7,16)(9,57)(10,18)(11,59)(12,20)(13,47)(15,45)(17,54)(19,56)(21,40)(22,29)(23,38)(24,31)(25,63)(26,49)(27,61)(28,51)(30,35)(32,33)(34,37)(36,39)(41,50)(42,62)(43,52)(44,64)(53,60)(55,58), (1,47,16,8)(2,38,13,30)(3,45,14,6)(4,40,15,32)(5,22,48,34)(7,24,46,36)(9,20,54,60)(10,61,55,50)(11,18,56,58)(12,63,53,52)(17,28,57,42)(19,26,59,44)(21,37,33,29)(23,39,35,31)(25,51,43,62)(27,49,41,64), (1,50,33,17)(2,18,34,51)(3,52,35,19)(4,20,36,49)(5,43,38,56)(6,53,39,44)(7,41,40,54)(8,55,37,42)(9,46,27,32)(10,29,28,47)(11,48,25,30)(12,31,26,45)(13,58,22,62)(14,63,23,59)(15,60,24,64)(16,61,21,57)>;

G:=Group( (1,16)(2,13)(3,14)(4,15)(5,48)(6,45)(7,46)(8,47)(9,54)(10,55)(11,56)(12,53)(17,57)(18,58)(19,59)(20,60)(21,33)(22,34)(23,35)(24,36)(25,43)(26,44)(27,41)(28,42)(29,37)(30,38)(31,39)(32,40)(49,64)(50,61)(51,62)(52,63), (1,21)(2,22)(3,23)(4,24)(5,30)(6,31)(7,32)(8,29)(9,41)(10,42)(11,43)(12,44)(13,34)(14,35)(15,36)(16,33)(17,61)(18,62)(19,63)(20,64)(25,56)(26,53)(27,54)(28,55)(37,47)(38,48)(39,45)(40,46)(49,60)(50,57)(51,58)(52,59), (1,23)(2,24)(3,21)(4,22)(5,32)(6,29)(7,30)(8,31)(9,43)(10,44)(11,41)(12,42)(13,36)(14,33)(15,34)(16,35)(17,63)(18,64)(19,61)(20,62)(25,54)(26,55)(27,56)(28,53)(37,45)(38,46)(39,47)(40,48)(49,58)(50,59)(51,60)(52,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,46)(2,8)(3,48)(4,6)(5,14)(7,16)(9,57)(10,18)(11,59)(12,20)(13,47)(15,45)(17,54)(19,56)(21,40)(22,29)(23,38)(24,31)(25,63)(26,49)(27,61)(28,51)(30,35)(32,33)(34,37)(36,39)(41,50)(42,62)(43,52)(44,64)(53,60)(55,58), (1,47,16,8)(2,38,13,30)(3,45,14,6)(4,40,15,32)(5,22,48,34)(7,24,46,36)(9,20,54,60)(10,61,55,50)(11,18,56,58)(12,63,53,52)(17,28,57,42)(19,26,59,44)(21,37,33,29)(23,39,35,31)(25,51,43,62)(27,49,41,64), (1,50,33,17)(2,18,34,51)(3,52,35,19)(4,20,36,49)(5,43,38,56)(6,53,39,44)(7,41,40,54)(8,55,37,42)(9,46,27,32)(10,29,28,47)(11,48,25,30)(12,31,26,45)(13,58,22,62)(14,63,23,59)(15,60,24,64)(16,61,21,57) );

G=PermutationGroup([(1,16),(2,13),(3,14),(4,15),(5,48),(6,45),(7,46),(8,47),(9,54),(10,55),(11,56),(12,53),(17,57),(18,58),(19,59),(20,60),(21,33),(22,34),(23,35),(24,36),(25,43),(26,44),(27,41),(28,42),(29,37),(30,38),(31,39),(32,40),(49,64),(50,61),(51,62),(52,63)], [(1,21),(2,22),(3,23),(4,24),(5,30),(6,31),(7,32),(8,29),(9,41),(10,42),(11,43),(12,44),(13,34),(14,35),(15,36),(16,33),(17,61),(18,62),(19,63),(20,64),(25,56),(26,53),(27,54),(28,55),(37,47),(38,48),(39,45),(40,46),(49,60),(50,57),(51,58),(52,59)], [(1,23),(2,24),(3,21),(4,22),(5,32),(6,29),(7,30),(8,31),(9,43),(10,44),(11,41),(12,42),(13,36),(14,33),(15,34),(16,35),(17,63),(18,64),(19,61),(20,62),(25,54),(26,55),(27,56),(28,53),(37,45),(38,46),(39,47),(40,48),(49,58),(50,59),(51,60),(52,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,46),(2,8),(3,48),(4,6),(5,14),(7,16),(9,57),(10,18),(11,59),(12,20),(13,47),(15,45),(17,54),(19,56),(21,40),(22,29),(23,38),(24,31),(25,63),(26,49),(27,61),(28,51),(30,35),(32,33),(34,37),(36,39),(41,50),(42,62),(43,52),(44,64),(53,60),(55,58)], [(1,47,16,8),(2,38,13,30),(3,45,14,6),(4,40,15,32),(5,22,48,34),(7,24,46,36),(9,20,54,60),(10,61,55,50),(11,18,56,58),(12,63,53,52),(17,28,57,42),(19,26,59,44),(21,37,33,29),(23,39,35,31),(25,51,43,62),(27,49,41,64)], [(1,50,33,17),(2,18,34,51),(3,52,35,19),(4,20,36,49),(5,43,38,56),(6,53,39,44),(7,41,40,54),(8,55,37,42),(9,46,27,32),(10,29,28,47),(11,48,25,30),(12,31,26,45),(13,58,22,62),(14,63,23,59),(15,60,24,64),(16,61,21,57)])

32 conjugacy classes

class 1 2A···2G2H2I2J4A···4P4Q···4U
order12···22224···44···4
size11···14484···48···8

32 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC23.681C24C23.7Q8C428C4C23.8Q8C23.23D4C23.63C23C24.C22C23.10D4C23.Q8C23.11D4C23.81C23C23.83C23C2×C4C23C22C22
# reps1111114211118431

Matrix representation of C23.681C24 in GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
030000
300000
002100
002300
000030
000003
,
100000
010000
001300
000400
000003
000020
,
030000
200000
002000
000200
000001
000010
,
010000
400000
003000
003200
000010
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,2,2,0,0,0,0,1,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,3,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C23.681C24 in GAP, Magma, Sage, TeX

C_2^3._{681}C_2^4
% in TeX

G:=Group("C2^3.681C2^4");
// GroupNames label

G:=SmallGroup(128,1513);
// by ID

G=gap.SmallGroup(128,1513);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,758,723,100,1571,346,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=1,d^2=c*b=b*c,f^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽