Copied to
clipboard

G = C24.592C23order 128 = 27

73rd non-split extension by C24 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.592C23, C23.539C24, C22.2322- 1+4, C22.3152+ 1+4, C23⋊Q832C2, C23.370(C2×D4), (C22×C4).407D4, C23.244(C4○D4), C23.23D473C2, C23.10D463C2, C23.11D463C2, C2.30(C233D4), (C22×C4).149C23, (C23×C4).140C22, C22.3(C4.4D4), C22.364(C22×D4), (C22×D4).197C22, (C22×Q8).158C22, C23.83C2363C2, C2.43(C22.32C24), C2.C42.552C22, C2.43(C22.33C24), C2.31(C22.31C24), (C2×C4).398(C2×D4), (C2×C22⋊Q8)⋊30C2, (C2×C4⋊D4).41C2, C2.29(C2×C4.4D4), (C2×C4⋊C4).365C22, C22.411(C2×C4○D4), (C2×C2.C42)⋊38C2, (C2×C22⋊C4).227C22, SmallGroup(128,1371)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.592C23
C1C2C22C23C24C22×D4C23.23D4 — C24.592C23
C1C23 — C24.592C23
C1C23 — C24.592C23
C1C23 — C24.592C23

Generators and relations for C24.592C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=d, f2=c, gag=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg=ce=ec, cf=fc, cg=gc, de=ed, gfg=df=fd, dg=gd >

Subgroups: 628 in 288 conjugacy classes, 100 normal (20 characteristic)
C1, C2 [×3], C2 [×4], C2 [×6], C4 [×14], C22 [×3], C22 [×8], C22 [×26], C2×C4 [×4], C2×C4 [×46], D4 [×12], Q8 [×4], C23, C23 [×6], C23 [×18], C22⋊C4 [×16], C4⋊C4 [×8], C22×C4 [×2], C22×C4 [×14], C22×C4 [×10], C2×D4 [×16], C2×Q8 [×4], C24, C24 [×2], C2.C42 [×12], C2×C22⋊C4 [×12], C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C4⋊D4 [×4], C22⋊Q8 [×4], C23×C4, C23×C4 [×2], C22×D4, C22×D4 [×2], C22×Q8, C2×C2.C42, C23.23D4 [×4], C23⋊Q8 [×2], C23.10D4 [×2], C23.11D4 [×2], C23.83C23 [×2], C2×C4⋊D4, C2×C22⋊Q8, C24.592C23
Quotients: C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C4.4D4 [×4], C22×D4, C2×C4○D4 [×2], 2+ 1+4 [×3], 2- 1+4, C2×C4.4D4, C233D4, C22.31C24, C22.32C24 [×2], C22.33C24 [×2], C24.592C23

Smallest permutation representation of C24.592C23
On 64 points
Generators in S64
(1 41)(2 42)(3 43)(4 44)(5 48)(6 45)(7 46)(8 47)(9 13)(10 14)(11 15)(12 16)(17 39)(18 40)(19 37)(20 38)(21 25)(22 26)(23 27)(24 28)(29 35)(30 36)(31 33)(32 34)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 45)(2 32 52 18)(3 57 49 47)(4 30 50 20)(5 16 62 26)(6 41 63 55)(7 14 64 28)(8 43 61 53)(9 31 23 17)(10 60 24 46)(11 29 21 19)(12 58 22 48)(13 33 27 39)(15 35 25 37)(34 56 40 42)(36 54 38 44)
(2 52)(4 50)(5 34)(6 37)(7 36)(8 39)(10 24)(12 22)(13 41)(14 56)(15 43)(16 54)(17 19)(18 30)(20 32)(25 53)(26 44)(27 55)(28 42)(29 31)(33 61)(35 63)(38 64)(40 62)(45 47)(46 58)(48 60)(57 59)

G:=sub<Sym(64)| (1,41)(2,42)(3,43)(4,44)(5,48)(6,45)(7,46)(8,47)(9,13)(10,14)(11,15)(12,16)(17,39)(18,40)(19,37)(20,38)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,45)(2,32,52,18)(3,57,49,47)(4,30,50,20)(5,16,62,26)(6,41,63,55)(7,14,64,28)(8,43,61,53)(9,31,23,17)(10,60,24,46)(11,29,21,19)(12,58,22,48)(13,33,27,39)(15,35,25,37)(34,56,40,42)(36,54,38,44), (2,52)(4,50)(5,34)(6,37)(7,36)(8,39)(10,24)(12,22)(13,41)(14,56)(15,43)(16,54)(17,19)(18,30)(20,32)(25,53)(26,44)(27,55)(28,42)(29,31)(33,61)(35,63)(38,64)(40,62)(45,47)(46,58)(48,60)(57,59)>;

G:=Group( (1,41)(2,42)(3,43)(4,44)(5,48)(6,45)(7,46)(8,47)(9,13)(10,14)(11,15)(12,16)(17,39)(18,40)(19,37)(20,38)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,45)(2,32,52,18)(3,57,49,47)(4,30,50,20)(5,16,62,26)(6,41,63,55)(7,14,64,28)(8,43,61,53)(9,31,23,17)(10,60,24,46)(11,29,21,19)(12,58,22,48)(13,33,27,39)(15,35,25,37)(34,56,40,42)(36,54,38,44), (2,52)(4,50)(5,34)(6,37)(7,36)(8,39)(10,24)(12,22)(13,41)(14,56)(15,43)(16,54)(17,19)(18,30)(20,32)(25,53)(26,44)(27,55)(28,42)(29,31)(33,61)(35,63)(38,64)(40,62)(45,47)(46,58)(48,60)(57,59) );

G=PermutationGroup([(1,41),(2,42),(3,43),(4,44),(5,48),(6,45),(7,46),(8,47),(9,13),(10,14),(11,15),(12,16),(17,39),(18,40),(19,37),(20,38),(21,25),(22,26),(23,27),(24,28),(29,35),(30,36),(31,33),(32,34),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,45),(2,32,52,18),(3,57,49,47),(4,30,50,20),(5,16,62,26),(6,41,63,55),(7,14,64,28),(8,43,61,53),(9,31,23,17),(10,60,24,46),(11,29,21,19),(12,58,22,48),(13,33,27,39),(15,35,25,37),(34,56,40,42),(36,54,38,44)], [(2,52),(4,50),(5,34),(6,37),(7,36),(8,39),(10,24),(12,22),(13,41),(14,56),(15,43),(16,54),(17,19),(18,30),(20,32),(25,53),(26,44),(27,55),(28,42),(29,31),(33,61),(35,63),(38,64),(40,62),(45,47),(46,58),(48,60),(57,59)])

32 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4L4M···4R
order12···22222224···44···4
size11···12222884···48···8

32 irreducible representations

dim1111111112244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC24.592C23C2×C2.C42C23.23D4C23⋊Q8C23.10D4C23.11D4C23.83C23C2×C4⋊D4C2×C22⋊Q8C22×C4C23C22C22
# reps1142222114831

Matrix representation of C24.592C23 in GL8(𝔽5)

40000000
04000000
00400000
00040000
00001300
00000400
00000401
00000410
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
20000000
02000000
00040000
00100000
00001300
00000400
00001404
00001440
,
01000000
10000000
00010000
00400000
00001030
00000041
00001040
00001440
,
10000000
04000000
00400000
00010000
00001000
00001400
00000010
00001004

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4,4,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,3,4,4,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,4,0,0,0,0,3,4,4,4,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4] >;

C24.592C23 in GAP, Magma, Sage, TeX

C_2^4._{592}C_2^3
% in TeX

G:=Group("C2^4.592C2^3");
// GroupNames label

G:=SmallGroup(128,1371);
// by ID

G=gap.SmallGroup(128,1371);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,185]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=d,f^2=c,g*a*g=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽