Copied to
clipboard

G = C2×C22.31C24order 128 = 27

Direct product of C2 and C22.31C24

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C2×C22.31C24, C23.17C24, C22.37C25, C24.612C23, C22.742- 1+4, C22.1012+ 1+4, (C22×C4)⋊43D4, (C2×C4).40C24, C2.16(D4×C23), C4⋊C4.281C23, C4⋊D462C22, C4.172(C22×D4), C23.409(C2×D4), C22⋊C4.5C23, C22⋊Q873C22, C22.2(C22×D4), (C2×D4).290C23, (C2×Q8).422C23, C2.6(C2×2+ 1+4), C2.5(C2×2- 1+4), (C23×C4).583C22, (C22×C4).1178C23, (C22×D4).419C22, (C22×Q8).488C22, (C2×C4)⋊11(C2×D4), (C2×C4⋊D4)⋊55C2, (C22×C4⋊C4)⋊41C2, (C2×C22⋊Q8)⋊62C2, (C2×C4⋊C4)⋊128C22, (C22×C4○D4)⋊14C2, (C2×C4○D4)⋊68C22, (C2×C22⋊C4).374C22, SmallGroup(128,2180)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C22.31C24
C1C2C22C23C22×C4C23×C4C22×C4○D4 — C2×C22.31C24
C1C22 — C2×C22.31C24
C1C23 — C2×C22.31C24
C1C22 — C2×C22.31C24

Generators and relations for C2×C22.31C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=gdg-1=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 1324 in 820 conjugacy classes, 436 normal (10 characteristic)
C1, C2 [×3], C2 [×4], C2 [×12], C4 [×8], C4 [×16], C22, C22 [×10], C22 [×52], C2×C4 [×44], C2×C4 [×56], D4 [×64], Q8 [×16], C23, C23 [×14], C23 [×28], C22⋊C4 [×32], C4⋊C4 [×32], C22×C4 [×46], C22×C4 [×20], C2×D4 [×40], C2×D4 [×32], C2×Q8 [×8], C2×Q8 [×8], C4○D4 [×64], C24, C24 [×4], C2×C22⋊C4 [×8], C2×C4⋊C4 [×16], C4⋊D4 [×64], C22⋊Q8 [×32], C23×C4, C23×C4 [×6], C22×D4 [×10], C22×Q8 [×2], C2×C4○D4 [×16], C2×C4○D4 [×16], C22×C4⋊C4, C2×C4⋊D4 [×8], C2×C22⋊Q8 [×4], C22.31C24 [×16], C22×C4○D4 [×2], C2×C22.31C24
Quotients: C1, C2 [×31], C22 [×155], D4 [×8], C23 [×155], C2×D4 [×28], C24 [×31], C22×D4 [×14], 2+ 1+4 [×2], 2- 1+4 [×2], C25, C22.31C24 [×4], D4×C23, C2×2+ 1+4, C2×2- 1+4, C2×C22.31C24

Smallest permutation representation of C2×C22.31C24
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 24)(6 21)(7 22)(8 23)(13 51)(14 52)(15 49)(16 50)(17 40)(18 37)(19 38)(20 39)(25 30)(26 31)(27 32)(28 29)(33 56)(34 53)(35 54)(36 55)(41 46)(42 47)(43 48)(44 45)(57 62)(58 63)(59 64)(60 61)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 23)(2 24)(3 21)(4 22)(5 10)(6 11)(7 12)(8 9)(13 59)(14 60)(15 57)(16 58)(17 30)(18 31)(19 32)(20 29)(25 40)(26 37)(27 38)(28 39)(33 46)(34 47)(35 48)(36 45)(41 56)(42 53)(43 54)(44 55)(49 62)(50 63)(51 64)(52 61)
(1 5)(2 8)(3 7)(4 6)(9 24)(10 23)(11 22)(12 21)(13 52)(14 51)(15 50)(16 49)(17 39)(18 38)(19 37)(20 40)(25 29)(26 32)(27 31)(28 30)(33 42)(34 41)(35 44)(36 43)(45 54)(46 53)(47 56)(48 55)(57 63)(58 62)(59 61)(60 64)
(1 34)(2 35)(3 36)(4 33)(5 43)(6 44)(7 41)(8 42)(9 53)(10 54)(11 55)(12 56)(13 30)(14 31)(15 32)(16 29)(17 59)(18 60)(19 57)(20 58)(21 45)(22 46)(23 47)(24 48)(25 51)(26 52)(27 49)(28 50)(37 61)(38 62)(39 63)(40 64)
(1 18)(2 19)(3 20)(4 17)(5 27)(6 28)(7 25)(8 26)(9 37)(10 38)(11 39)(12 40)(13 48)(14 45)(15 46)(16 47)(21 29)(22 30)(23 31)(24 32)(33 57)(34 58)(35 59)(36 60)(41 49)(42 50)(43 51)(44 52)(53 63)(54 64)(55 61)(56 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,51)(14,52)(15,49)(16,50)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,56)(34,53)(35,54)(36,55)(41,46)(42,47)(43,48)(44,45)(57,62)(58,63)(59,64)(60,61), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,59)(14,60)(15,57)(16,58)(17,30)(18,31)(19,32)(20,29)(25,40)(26,37)(27,38)(28,39)(33,46)(34,47)(35,48)(36,45)(41,56)(42,53)(43,54)(44,55)(49,62)(50,63)(51,64)(52,61), (1,5)(2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,52)(14,51)(15,50)(16,49)(17,39)(18,38)(19,37)(20,40)(25,29)(26,32)(27,31)(28,30)(33,42)(34,41)(35,44)(36,43)(45,54)(46,53)(47,56)(48,55)(57,63)(58,62)(59,61)(60,64), (1,34)(2,35)(3,36)(4,33)(5,43)(6,44)(7,41)(8,42)(9,53)(10,54)(11,55)(12,56)(13,30)(14,31)(15,32)(16,29)(17,59)(18,60)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,51)(26,52)(27,49)(28,50)(37,61)(38,62)(39,63)(40,64), (1,18)(2,19)(3,20)(4,17)(5,27)(6,28)(7,25)(8,26)(9,37)(10,38)(11,39)(12,40)(13,48)(14,45)(15,46)(16,47)(21,29)(22,30)(23,31)(24,32)(33,57)(34,58)(35,59)(36,60)(41,49)(42,50)(43,51)(44,52)(53,63)(54,64)(55,61)(56,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,24)(6,21)(7,22)(8,23)(13,51)(14,52)(15,49)(16,50)(17,40)(18,37)(19,38)(20,39)(25,30)(26,31)(27,32)(28,29)(33,56)(34,53)(35,54)(36,55)(41,46)(42,47)(43,48)(44,45)(57,62)(58,63)(59,64)(60,61), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,23)(2,24)(3,21)(4,22)(5,10)(6,11)(7,12)(8,9)(13,59)(14,60)(15,57)(16,58)(17,30)(18,31)(19,32)(20,29)(25,40)(26,37)(27,38)(28,39)(33,46)(34,47)(35,48)(36,45)(41,56)(42,53)(43,54)(44,55)(49,62)(50,63)(51,64)(52,61), (1,5)(2,8)(3,7)(4,6)(9,24)(10,23)(11,22)(12,21)(13,52)(14,51)(15,50)(16,49)(17,39)(18,38)(19,37)(20,40)(25,29)(26,32)(27,31)(28,30)(33,42)(34,41)(35,44)(36,43)(45,54)(46,53)(47,56)(48,55)(57,63)(58,62)(59,61)(60,64), (1,34)(2,35)(3,36)(4,33)(5,43)(6,44)(7,41)(8,42)(9,53)(10,54)(11,55)(12,56)(13,30)(14,31)(15,32)(16,29)(17,59)(18,60)(19,57)(20,58)(21,45)(22,46)(23,47)(24,48)(25,51)(26,52)(27,49)(28,50)(37,61)(38,62)(39,63)(40,64), (1,18)(2,19)(3,20)(4,17)(5,27)(6,28)(7,25)(8,26)(9,37)(10,38)(11,39)(12,40)(13,48)(14,45)(15,46)(16,47)(21,29)(22,30)(23,31)(24,32)(33,57)(34,58)(35,59)(36,60)(41,49)(42,50)(43,51)(44,52)(53,63)(54,64)(55,61)(56,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64) );

G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,24),(6,21),(7,22),(8,23),(13,51),(14,52),(15,49),(16,50),(17,40),(18,37),(19,38),(20,39),(25,30),(26,31),(27,32),(28,29),(33,56),(34,53),(35,54),(36,55),(41,46),(42,47),(43,48),(44,45),(57,62),(58,63),(59,64),(60,61)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,23),(2,24),(3,21),(4,22),(5,10),(6,11),(7,12),(8,9),(13,59),(14,60),(15,57),(16,58),(17,30),(18,31),(19,32),(20,29),(25,40),(26,37),(27,38),(28,39),(33,46),(34,47),(35,48),(36,45),(41,56),(42,53),(43,54),(44,55),(49,62),(50,63),(51,64),(52,61)], [(1,5),(2,8),(3,7),(4,6),(9,24),(10,23),(11,22),(12,21),(13,52),(14,51),(15,50),(16,49),(17,39),(18,38),(19,37),(20,40),(25,29),(26,32),(27,31),(28,30),(33,42),(34,41),(35,44),(36,43),(45,54),(46,53),(47,56),(48,55),(57,63),(58,62),(59,61),(60,64)], [(1,34),(2,35),(3,36),(4,33),(5,43),(6,44),(7,41),(8,42),(9,53),(10,54),(11,55),(12,56),(13,30),(14,31),(15,32),(16,29),(17,59),(18,60),(19,57),(20,58),(21,45),(22,46),(23,47),(24,48),(25,51),(26,52),(27,49),(28,50),(37,61),(38,62),(39,63),(40,64)], [(1,18),(2,19),(3,20),(4,17),(5,27),(6,28),(7,25),(8,26),(9,37),(10,38),(11,39),(12,40),(13,48),(14,45),(15,46),(16,47),(21,29),(22,30),(23,31),(24,32),(33,57),(34,58),(35,59),(36,60),(41,49),(42,50),(43,51),(44,52),(53,63),(54,64),(55,61),(56,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)])

44 conjugacy classes

class 1 2A···2G2H2I2J2K2L···2S4A···4H4I···4X
order12···222222···24···44···4
size11···122224···42···24···4

44 irreducible representations

dim111111244
type++++++++-
imageC1C2C2C2C2C2D42+ 1+42- 1+4
kernelC2×C22.31C24C22×C4⋊C4C2×C4⋊D4C2×C22⋊Q8C22.31C24C22×C4○D4C22×C4C22C22
# reps1184162822

Matrix representation of C2×C22.31C24 in GL8(𝔽5)

10000000
01000000
00400000
00040000
00004000
00000400
00000040
00000004
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
10000000
04000000
00400000
00010000
00000100
00001000
00001142
00000001
,
40000000
04000000
00100000
00010000
00000420
00004321
00000413
00003341
,
04000000
40000000
00010000
00100000
00000300
00002000
00000321
00004423
,
40000000
04000000
00400000
00040000
00000400
00001000
00001142
00000141

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,3,0,0,0,0,4,3,4,3,0,0,0,0,2,2,1,4,0,0,0,0,0,1,3,1],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,3,0,3,4,0,0,0,0,0,0,2,2,0,0,0,0,0,0,1,3],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,1,1,0,0,0,0,0,0,4,4,0,0,0,0,0,0,2,1] >;

C2×C22.31C24 in GAP, Magma, Sage, TeX

C_2\times C_2^2._{31}C_2^4
% in TeX

G:=Group("C2xC2^2.31C2^4");
// GroupNames label

G:=SmallGroup(128,2180);
// by ID

G=gap.SmallGroup(128,2180);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,387,1123,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=g*d*g^-1=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽