direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D66, C2×D33, C22⋊S3, C6⋊D11, C3⋊2D22, C11⋊2D6, C66⋊1C2, C33⋊2C22, sometimes denoted D132 or Dih66 or Dih132, SmallGroup(132,9)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — D66 |
Generators and relations for D66
G = < a,b | a66=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 60)(8 59)(9 58)(10 57)(11 56)(12 55)(13 54)(14 53)(15 52)(16 51)(17 50)(18 49)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)(31 36)(32 35)(33 34)
G:=sub<Sym(66)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,54)(14,53)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,36)(32,35)(33,34) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,60),(8,59),(9,58),(10,57),(11,56),(12,55),(13,54),(14,53),(15,52),(16,51),(17,50),(18,49),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37),(31,36),(32,35),(33,34)]])
D66 is a maximal subgroup of
D33⋊C4 C3⋊D44 C11⋊D12 D132 C33⋊7D4 C2×S3×D11
D66 is a maximal quotient of Dic66 D132 C33⋊7D4
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 6 | 11A | ··· | 11E | 22A | ··· | 22E | 33A | ··· | 33J | 66A | ··· | 66J |
order | 1 | 2 | 2 | 2 | 3 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 33 | ··· | 33 | 66 | ··· | 66 |
size | 1 | 1 | 33 | 33 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D11 | D22 | D33 | D66 |
kernel | D66 | D33 | C66 | C22 | C11 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 5 | 5 | 10 | 10 |
Matrix representation of D66 ►in GL2(𝔽67) generated by
44 | 15 |
35 | 15 |
54 | 14 |
55 | 13 |
G:=sub<GL(2,GF(67))| [44,35,15,15],[54,55,14,13] >;
D66 in GAP, Magma, Sage, TeX
D_{66}
% in TeX
G:=Group("D66");
// GroupNames label
G:=SmallGroup(132,9);
// by ID
G=gap.SmallGroup(132,9);
# by ID
G:=PCGroup([4,-2,-2,-3,-11,98,1923]);
// Polycyclic
G:=Group<a,b|a^66=b^2=1,b*a*b=a^-1>;
// generators/relations
Export