# Extensions 1→N→G→Q→1 with N=C6 and Q=C3×D4

Direct product G=N×Q with N=C6 and Q=C3×D4
dρLabelID
D4×C3×C672D4xC3xC6144,179

Semidirect products G=N:Q with N=C6 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C61(C3×D4) = C6×D12φ: C3×D4/C12C2 ⊆ Aut C648C6:1(C3xD4)144,160
C62(C3×D4) = C6×C3⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C624C6:2(C3xD4)144,167

Non-split extensions G=N.Q with N=C6 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C6.1(C3×D4) = C3×C24⋊C2φ: C3×D4/C12C2 ⊆ Aut C6482C6.1(C3xD4)144,71
C6.2(C3×D4) = C3×D24φ: C3×D4/C12C2 ⊆ Aut C6482C6.2(C3xD4)144,72
C6.3(C3×D4) = C3×Dic12φ: C3×D4/C12C2 ⊆ Aut C6482C6.3(C3xD4)144,73
C6.4(C3×D4) = C3×C4⋊Dic3φ: C3×D4/C12C2 ⊆ Aut C648C6.4(C3xD4)144,78
C6.5(C3×D4) = C3×Dic3⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C648C6.5(C3xD4)144,77
C6.6(C3×D4) = C3×D6⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C648C6.6(C3xD4)144,79
C6.7(C3×D4) = C3×D4⋊S3φ: C3×D4/C2×C6C2 ⊆ Aut C6244C6.7(C3xD4)144,80
C6.8(C3×D4) = C3×D4.S3φ: C3×D4/C2×C6C2 ⊆ Aut C6244C6.8(C3xD4)144,81
C6.9(C3×D4) = C3×Q82S3φ: C3×D4/C2×C6C2 ⊆ Aut C6484C6.9(C3xD4)144,82
C6.10(C3×D4) = C3×C3⋊Q16φ: C3×D4/C2×C6C2 ⊆ Aut C6484C6.10(C3xD4)144,83
C6.11(C3×D4) = C3×C6.D4φ: C3×D4/C2×C6C2 ⊆ Aut C624C6.11(C3xD4)144,84
C6.12(C3×D4) = C9×C22⋊C4central extension (φ=1)72C6.12(C3xD4)144,21
C6.13(C3×D4) = C9×C4⋊C4central extension (φ=1)144C6.13(C3xD4)144,22
C6.14(C3×D4) = C9×D8central extension (φ=1)722C6.14(C3xD4)144,25
C6.15(C3×D4) = C9×SD16central extension (φ=1)722C6.15(C3xD4)144,26
C6.16(C3×D4) = C9×Q16central extension (φ=1)1442C6.16(C3xD4)144,27
C6.17(C3×D4) = D4×C18central extension (φ=1)72C6.17(C3xD4)144,48
C6.18(C3×D4) = C32×C22⋊C4central extension (φ=1)72C6.18(C3xD4)144,102
C6.19(C3×D4) = C32×C4⋊C4central extension (φ=1)144C6.19(C3xD4)144,103
C6.20(C3×D4) = C32×D8central extension (φ=1)72C6.20(C3xD4)144,106
C6.21(C3×D4) = C32×SD16central extension (φ=1)72C6.21(C3xD4)144,107
C6.22(C3×D4) = C32×Q16central extension (φ=1)144C6.22(C3xD4)144,108

׿
×
𝔽