# Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C22

Direct product G=N×Q with N=S3×C6 and Q=C22
dρLabelID
S3×C22×C648S3xC2^2xC6144,195

Semidirect products G=N:Q with N=S3×C6 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C22 = S3×D12φ: C22/C1C22 ⊆ Out S3×C6244+(S3xC6):1C2^2144,144
(S3×C6)⋊2C22 = D6⋊D6φ: C22/C1C22 ⊆ Out S3×C6244(S3xC6):2C2^2144,145
(S3×C6)⋊3C22 = S3×C3⋊D4φ: C22/C1C22 ⊆ Out S3×C6244(S3xC6):3C2^2144,153
(S3×C6)⋊4C22 = Dic3⋊D6φ: C22/C1C22 ⊆ Out S3×C6124+(S3xC6):4C2^2144,154
(S3×C6)⋊5C22 = C2×D6⋊S3φ: C22/C2C2 ⊆ Out S3×C648(S3xC6):5C2^2144,150
(S3×C6)⋊6C22 = C2×C3⋊D12φ: C22/C2C2 ⊆ Out S3×C624(S3xC6):6C2^2144,151
(S3×C6)⋊7C22 = C6×D12φ: C22/C2C2 ⊆ Out S3×C648(S3xC6):7C2^2144,160
(S3×C6)⋊8C22 = C3×S3×D4φ: C22/C2C2 ⊆ Out S3×C6244(S3xC6):8C2^2144,162
(S3×C6)⋊9C22 = C6×C3⋊D4φ: C22/C2C2 ⊆ Out S3×C624(S3xC6):9C2^2144,167
(S3×C6)⋊10C22 = C22×S32φ: C22/C2C2 ⊆ Out S3×C624(S3xC6):10C2^2144,192

Non-split extensions G=N.Q with N=S3×C6 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C6).1C22 = D125S3φ: C22/C1C22 ⊆ Out S3×C6484-(S3xC6).1C2^2144,138
(S3×C6).2C22 = D12⋊S3φ: C22/C1C22 ⊆ Out S3×C6244(S3xC6).2C2^2144,139
(S3×C6).3C22 = D6.3D6φ: C22/C1C22 ⊆ Out S3×C6244(S3xC6).3C2^2144,147
(S3×C6).4C22 = D6.4D6φ: C22/C1C22 ⊆ Out S3×C6244-(S3xC6).4C2^2144,148
(S3×C6).5C22 = S3×Dic6φ: C22/C2C2 ⊆ Out S3×C6484-(S3xC6).5C2^2144,137
(S3×C6).6C22 = D6.D6φ: C22/C2C2 ⊆ Out S3×C6244(S3xC6).6C2^2144,141
(S3×C6).7C22 = D6.6D6φ: C22/C2C2 ⊆ Out S3×C6244+(S3xC6).7C2^2144,142
(S3×C6).8C22 = C4×S32φ: C22/C2C2 ⊆ Out S3×C6244(S3xC6).8C2^2144,143
(S3×C6).9C22 = C2×S3×Dic3φ: C22/C2C2 ⊆ Out S3×C648(S3xC6).9C2^2144,146
(S3×C6).10C22 = C3×C4○D12φ: C22/C2C2 ⊆ Out S3×C6242(S3xC6).10C2^2144,161
(S3×C6).11C22 = C3×D42S3φ: C22/C2C2 ⊆ Out S3×C6244(S3xC6).11C2^2144,163
(S3×C6).12C22 = C3×Q83S3φ: C22/C2C2 ⊆ Out S3×C6484(S3xC6).12C2^2144,165
(S3×C6).13C22 = S3×C2×C12φ: trivial image48(S3xC6).13C2^2144,159
(S3×C6).14C22 = C3×S3×Q8φ: trivial image484(S3xC6).14C2^2144,164

׿
×
𝔽