Extensions 1→N→G→Q→1 with N=C6 and Q=S4

Direct product G=N×Q with N=C6 and Q=S4

Semidirect products G=N:Q with N=C6 and Q=S4
extensionφ:Q→Aut NdρLabelID
C6⋊S4 = C2×C3⋊S4φ: S4/A4C2 ⊆ Aut C6186+C6:S4144,189

Non-split extensions G=N.Q with N=C6 and Q=S4
extensionφ:Q→Aut NdρLabelID
C6.1S4 = Q8.D9φ: S4/A4C2 ⊆ Aut C61444-C6.1S4144,31
C6.2S4 = Q8⋊D9φ: S4/A4C2 ⊆ Aut C6724+C6.2S4144,32
C6.3S4 = C6.S4φ: S4/A4C2 ⊆ Aut C6366-C6.3S4144,33
C6.4S4 = C2×C3.S4φ: S4/A4C2 ⊆ Aut C6186+C6.4S4144,109
C6.5S4 = C6.5S4φ: S4/A4C2 ⊆ Aut C6484-C6.5S4144,124
C6.6S4 = C6.6S4φ: S4/A4C2 ⊆ Aut C6244+C6.6S4144,125
C6.7S4 = C6.7S4φ: S4/A4C2 ⊆ Aut C6366-C6.7S4144,126
C6.8S4 = C3×CSU2(𝔽3)central extension (φ=1)482C6.8S4144,121
C6.9S4 = C3×GL2(𝔽3)central extension (φ=1)242C6.9S4144,122
C6.10S4 = C3×A4⋊C4central extension (φ=1)363C6.10S4144,123