Copied to
clipboard

G = Q8.D9order 144 = 24·32

The non-split extension by Q8 of D9 acting via D9/C3=S3

non-abelian, soluble

Aliases: Q8.D9, C6.1S4, C3.CSU2(𝔽3), Q8⋊C9.C2, (C3×Q8).1S3, C2.2(C3.S4), SmallGroup(144,31)

Series: Derived Chief Lower central Upper central

C1C2Q8Q8⋊C9 — Q8.D9
C1C2Q8C3×Q8Q8⋊C9 — Q8.D9
Q8⋊C9 — Q8.D9
C1C2

Generators and relations for Q8.D9
 G = < a,b,c,d | a4=c9=1, b2=d2=a2, bab-1=a-1, cac-1=b, dad-1=a-1b, cbc-1=ab, dbd-1=a2b, dcd-1=c-1 >

3C4
18C4
4C9
9Q8
9C8
3C12
6Dic3
4C18
9Q16
3Dic6
3C3⋊C8
4Dic9
3C3⋊Q16

Character table of Q8.D9

 class 1234A4B68A8B9A9B9C1218A18B18C
 size 1126362181888812888
ρ1111111111111111    trivial
ρ21111-11-1-11111111    linear of order 2
ρ322220200-1-1-12-1-1-1    orthogonal lifted from S3
ρ422-120-100ζ9594ζ989ζ9792-1ζ9792ζ989ζ9594    orthogonal lifted from D9
ρ522-120-100ζ989ζ9792ζ9594-1ζ9594ζ9792ζ989    orthogonal lifted from D9
ρ622-120-100ζ9792ζ9594ζ989-1ζ989ζ9594ζ9792    orthogonal lifted from D9
ρ72-2200-22-2-1-1-10111    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ82-2200-2-22-1-1-10111    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ9333-1-1311000-1000    orthogonal lifted from S4
ρ10333-113-1-1000-1000    orthogonal lifted from S4
ρ114-4400-4001110-1-1-1    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ124-4-200200979295949890ζ989ζ9594ζ9792    symplectic faithful, Schur index 2
ρ134-4-200200959498997920ζ9792ζ989ζ9594    symplectic faithful, Schur index 2
ρ144-4-200200989979295940ζ9594ζ9792ζ989    symplectic faithful, Schur index 2
ρ1566-3-20-3000001000    orthogonal lifted from C3.S4

Smallest permutation representation of Q8.D9
Regular action on 144 points
Generators in S144
(1 102 74 129)(2 125 75 115)(3 86 76 97)(4 105 77 132)(5 119 78 109)(6 89 79 91)(7 108 80 135)(8 122 81 112)(9 83 73 94)(10 55 37 53)(11 66 38 142)(12 36 39 26)(13 58 40 47)(14 69 41 136)(15 30 42 20)(16 61 43 50)(17 72 44 139)(18 33 45 23)(19 59 29 48)(21 138 31 71)(22 62 32 51)(24 141 34 65)(25 56 35 54)(27 144 28 68)(46 67 57 143)(49 70 60 137)(52 64 63 140)(82 127 93 100)(84 124 95 114)(85 130 96 103)(87 118 98 117)(88 133 99 106)(90 121 92 111)(101 113 128 123)(104 116 131 126)(107 110 134 120)
(1 124 74 114)(2 85 75 96)(3 104 76 131)(4 118 77 117)(5 88 78 99)(6 107 79 134)(7 121 80 111)(8 82 81 93)(9 101 73 128)(10 65 37 141)(11 35 38 25)(12 57 39 46)(13 68 40 144)(14 29 41 19)(15 60 42 49)(16 71 43 138)(17 32 44 22)(18 63 45 52)(20 137 30 70)(21 61 31 50)(23 140 33 64)(24 55 34 53)(26 143 36 67)(27 58 28 47)(48 69 59 136)(51 72 62 139)(54 66 56 142)(83 123 94 113)(84 129 95 102)(86 126 97 116)(87 132 98 105)(89 120 91 110)(90 135 92 108)(100 112 127 122)(103 115 130 125)(106 109 133 119)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 70 74 137)(2 69 75 136)(3 68 76 144)(4 67 77 143)(5 66 78 142)(6 65 79 141)(7 64 80 140)(8 72 81 139)(9 71 73 138)(10 134 37 107)(11 133 38 106)(12 132 39 105)(13 131 40 104)(14 130 41 103)(15 129 42 102)(16 128 43 101)(17 127 44 100)(18 135 45 108)(19 125 29 115)(20 124 30 114)(21 123 31 113)(22 122 32 112)(23 121 33 111)(24 120 34 110)(25 119 35 109)(26 118 36 117)(27 126 28 116)(46 98 57 87)(47 97 58 86)(48 96 59 85)(49 95 60 84)(50 94 61 83)(51 93 62 82)(52 92 63 90)(53 91 55 89)(54 99 56 88)

G:=sub<Sym(144)| (1,102,74,129)(2,125,75,115)(3,86,76,97)(4,105,77,132)(5,119,78,109)(6,89,79,91)(7,108,80,135)(8,122,81,112)(9,83,73,94)(10,55,37,53)(11,66,38,142)(12,36,39,26)(13,58,40,47)(14,69,41,136)(15,30,42,20)(16,61,43,50)(17,72,44,139)(18,33,45,23)(19,59,29,48)(21,138,31,71)(22,62,32,51)(24,141,34,65)(25,56,35,54)(27,144,28,68)(46,67,57,143)(49,70,60,137)(52,64,63,140)(82,127,93,100)(84,124,95,114)(85,130,96,103)(87,118,98,117)(88,133,99,106)(90,121,92,111)(101,113,128,123)(104,116,131,126)(107,110,134,120), (1,124,74,114)(2,85,75,96)(3,104,76,131)(4,118,77,117)(5,88,78,99)(6,107,79,134)(7,121,80,111)(8,82,81,93)(9,101,73,128)(10,65,37,141)(11,35,38,25)(12,57,39,46)(13,68,40,144)(14,29,41,19)(15,60,42,49)(16,71,43,138)(17,32,44,22)(18,63,45,52)(20,137,30,70)(21,61,31,50)(23,140,33,64)(24,55,34,53)(26,143,36,67)(27,58,28,47)(48,69,59,136)(51,72,62,139)(54,66,56,142)(83,123,94,113)(84,129,95,102)(86,126,97,116)(87,132,98,105)(89,120,91,110)(90,135,92,108)(100,112,127,122)(103,115,130,125)(106,109,133,119), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,70,74,137)(2,69,75,136)(3,68,76,144)(4,67,77,143)(5,66,78,142)(6,65,79,141)(7,64,80,140)(8,72,81,139)(9,71,73,138)(10,134,37,107)(11,133,38,106)(12,132,39,105)(13,131,40,104)(14,130,41,103)(15,129,42,102)(16,128,43,101)(17,127,44,100)(18,135,45,108)(19,125,29,115)(20,124,30,114)(21,123,31,113)(22,122,32,112)(23,121,33,111)(24,120,34,110)(25,119,35,109)(26,118,36,117)(27,126,28,116)(46,98,57,87)(47,97,58,86)(48,96,59,85)(49,95,60,84)(50,94,61,83)(51,93,62,82)(52,92,63,90)(53,91,55,89)(54,99,56,88)>;

G:=Group( (1,102,74,129)(2,125,75,115)(3,86,76,97)(4,105,77,132)(5,119,78,109)(6,89,79,91)(7,108,80,135)(8,122,81,112)(9,83,73,94)(10,55,37,53)(11,66,38,142)(12,36,39,26)(13,58,40,47)(14,69,41,136)(15,30,42,20)(16,61,43,50)(17,72,44,139)(18,33,45,23)(19,59,29,48)(21,138,31,71)(22,62,32,51)(24,141,34,65)(25,56,35,54)(27,144,28,68)(46,67,57,143)(49,70,60,137)(52,64,63,140)(82,127,93,100)(84,124,95,114)(85,130,96,103)(87,118,98,117)(88,133,99,106)(90,121,92,111)(101,113,128,123)(104,116,131,126)(107,110,134,120), (1,124,74,114)(2,85,75,96)(3,104,76,131)(4,118,77,117)(5,88,78,99)(6,107,79,134)(7,121,80,111)(8,82,81,93)(9,101,73,128)(10,65,37,141)(11,35,38,25)(12,57,39,46)(13,68,40,144)(14,29,41,19)(15,60,42,49)(16,71,43,138)(17,32,44,22)(18,63,45,52)(20,137,30,70)(21,61,31,50)(23,140,33,64)(24,55,34,53)(26,143,36,67)(27,58,28,47)(48,69,59,136)(51,72,62,139)(54,66,56,142)(83,123,94,113)(84,129,95,102)(86,126,97,116)(87,132,98,105)(89,120,91,110)(90,135,92,108)(100,112,127,122)(103,115,130,125)(106,109,133,119), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,70,74,137)(2,69,75,136)(3,68,76,144)(4,67,77,143)(5,66,78,142)(6,65,79,141)(7,64,80,140)(8,72,81,139)(9,71,73,138)(10,134,37,107)(11,133,38,106)(12,132,39,105)(13,131,40,104)(14,130,41,103)(15,129,42,102)(16,128,43,101)(17,127,44,100)(18,135,45,108)(19,125,29,115)(20,124,30,114)(21,123,31,113)(22,122,32,112)(23,121,33,111)(24,120,34,110)(25,119,35,109)(26,118,36,117)(27,126,28,116)(46,98,57,87)(47,97,58,86)(48,96,59,85)(49,95,60,84)(50,94,61,83)(51,93,62,82)(52,92,63,90)(53,91,55,89)(54,99,56,88) );

G=PermutationGroup([[(1,102,74,129),(2,125,75,115),(3,86,76,97),(4,105,77,132),(5,119,78,109),(6,89,79,91),(7,108,80,135),(8,122,81,112),(9,83,73,94),(10,55,37,53),(11,66,38,142),(12,36,39,26),(13,58,40,47),(14,69,41,136),(15,30,42,20),(16,61,43,50),(17,72,44,139),(18,33,45,23),(19,59,29,48),(21,138,31,71),(22,62,32,51),(24,141,34,65),(25,56,35,54),(27,144,28,68),(46,67,57,143),(49,70,60,137),(52,64,63,140),(82,127,93,100),(84,124,95,114),(85,130,96,103),(87,118,98,117),(88,133,99,106),(90,121,92,111),(101,113,128,123),(104,116,131,126),(107,110,134,120)], [(1,124,74,114),(2,85,75,96),(3,104,76,131),(4,118,77,117),(5,88,78,99),(6,107,79,134),(7,121,80,111),(8,82,81,93),(9,101,73,128),(10,65,37,141),(11,35,38,25),(12,57,39,46),(13,68,40,144),(14,29,41,19),(15,60,42,49),(16,71,43,138),(17,32,44,22),(18,63,45,52),(20,137,30,70),(21,61,31,50),(23,140,33,64),(24,55,34,53),(26,143,36,67),(27,58,28,47),(48,69,59,136),(51,72,62,139),(54,66,56,142),(83,123,94,113),(84,129,95,102),(86,126,97,116),(87,132,98,105),(89,120,91,110),(90,135,92,108),(100,112,127,122),(103,115,130,125),(106,109,133,119)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,70,74,137),(2,69,75,136),(3,68,76,144),(4,67,77,143),(5,66,78,142),(6,65,79,141),(7,64,80,140),(8,72,81,139),(9,71,73,138),(10,134,37,107),(11,133,38,106),(12,132,39,105),(13,131,40,104),(14,130,41,103),(15,129,42,102),(16,128,43,101),(17,127,44,100),(18,135,45,108),(19,125,29,115),(20,124,30,114),(21,123,31,113),(22,122,32,112),(23,121,33,111),(24,120,34,110),(25,119,35,109),(26,118,36,117),(27,126,28,116),(46,98,57,87),(47,97,58,86),(48,96,59,85),(49,95,60,84),(50,94,61,83),(51,93,62,82),(52,92,63,90),(53,91,55,89),(54,99,56,88)]])

Q8.D9 is a maximal subgroup of   Q8.D18  C12.3S4  C12.11S4  C32.CSU2(𝔽3)  C18.5S4  C32.3CSU2(𝔽3)
Q8.D9 is a maximal quotient of   Q8⋊Dic9  Q8.D27  C32.3CSU2(𝔽3)

Matrix representation of Q8.D9 in GL4(𝔽73) generated by

1000
0100
00171
00172
,
1000
0100
003222
004341
,
317000
32800
002933
00943
,
1000
17200
004543
001428
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,1,0,0,71,72],[1,0,0,0,0,1,0,0,0,0,32,43,0,0,22,41],[31,3,0,0,70,28,0,0,0,0,29,9,0,0,33,43],[1,1,0,0,0,72,0,0,0,0,45,14,0,0,43,28] >;

Q8.D9 in GAP, Magma, Sage, TeX

Q_8.D_9
% in TeX

G:=Group("Q8.D9");
// GroupNames label

G:=SmallGroup(144,31);
// by ID

G=gap.SmallGroup(144,31);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,2,-2,432,121,79,218,867,1305,117,544,820,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^9=1,b^2=d^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d^-1=a^-1*b,c*b*c^-1=a*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8.D9 in TeX
Character table of Q8.D9 in TeX

׿
×
𝔽