direct product, non-abelian, soluble, monomial
Aliases: C2xC3.S4, C23:D9, C6.4S4, C22:D18, C3.(C2xS4), (C2xC6).D6, C3.A4:C22, (C22xC6).3S3, (C2xC3.A4):C2, SmallGroup(144,109)
Series: Derived ►Chief ►Lower central ►Upper central
C3.A4 — C2xC3.S4 |
Generators and relations for C2xC3.S4
G = < a,b,c,d,e,f | a2=b3=c2=d2=f2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=b-1e2 >
Subgroups: 285 in 56 conjugacy classes, 13 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C9, Dic3, D6, C2xC6, C2xC6, C2xD4, D9, C18, C2xDic3, C3:D4, C22xS3, C22xC6, C3.A4, D18, C2xC3:D4, C3.S4, C2xC3.A4, C2xC3.S4
Quotients: C1, C2, C22, S3, D6, D9, S4, D18, C2xS4, C3.S4, C2xC3.S4
Character table of C2xC3.S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 6A | 6B | 6C | 9A | 9B | 9C | 18A | 18B | 18C | |
size | 1 | 1 | 3 | 3 | 18 | 18 | 2 | 18 | 18 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ8 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ13 | 3 | -3 | -1 | 1 | -1 | 1 | 3 | -1 | 1 | -3 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ14 | 3 | -3 | -1 | 1 | 1 | -1 | 3 | 1 | -1 | -3 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ15 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ16 | 3 | 3 | -1 | -1 | 1 | 1 | 3 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ17 | 6 | 6 | -2 | -2 | 0 | 0 | -3 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
ρ18 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 10)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)
(1 11)(2 12)(4 14)(5 15)(7 17)(8 18)
(2 12)(3 13)(5 15)(6 16)(8 18)(9 10)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
(2 9)(3 8)(4 7)(5 6)(10 12)(13 18)(14 17)(15 16)
G:=sub<Sym(18)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,11)(2,12)(4,14)(5,15)(7,17)(8,18), (2,12)(3,13)(5,15)(6,16)(8,18)(9,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (2,9)(3,8)(4,7)(5,6)(10,12)(13,18)(14,17)(15,16)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,10), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (1,11)(2,12)(4,14)(5,15)(7,17)(8,18), (2,12)(3,13)(5,15)(6,16)(8,18)(9,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18), (2,9)(3,8)(4,7)(5,6)(10,12)(13,18)(14,17)(15,16) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,10)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18)], [(1,11),(2,12),(4,14),(5,15),(7,17),(8,18)], [(2,12),(3,13),(5,15),(6,16),(8,18),(9,10)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)], [(2,9),(3,8),(4,7),(5,6),(10,12),(13,18),(14,17),(15,16)]])
G:=TransitiveGroup(18,67);
C2xC3.S4 is a maximal subgroup of
C22:D36 C23.D18
C2xC3.S4 is a maximal quotient of C12.1S4 C22:D36 Q8.D18 C12.3S4 C12.11S4 C12.4S4 C23.D18
Matrix representation of C2xC3.S4 ►in GL5(F37)
36 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 35 | 0 | 0 | 0 |
20 | 35 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 3 | 0 | 0 | 0 |
7 | 14 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 36 | 0 |
14 | 34 | 0 | 0 | 0 |
28 | 23 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 36 |
G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,20,0,0,0,35,35,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,36],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,1],[28,7,0,0,0,3,14,0,0,0,0,0,0,36,0,0,0,0,0,36,0,0,1,0,0],[14,28,0,0,0,34,23,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,36] >;
C2xC3.S4 in GAP, Magma, Sage, TeX
C_2\times C_3.S_4
% in TeX
G:=Group("C2xC3.S4");
// GroupNames label
G:=SmallGroup(144,109);
// by ID
G=gap.SmallGroup(144,109);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-2,2,362,122,579,2164,556,1301,989]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^2=f^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=b^-1*e^2>;
// generators/relations
Export