Extensions 1→N→G→Q→1 with N=C6 and Q=C4×S3

Direct product G=N×Q with N=C6 and Q=C4×S3
dρLabelID
S3×C2×C1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C6 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C61(C4×S3) = C2×C6.D6φ: C4×S3/Dic3C2 ⊆ Aut C624C6:1(C4xS3)144,149
C62(C4×S3) = C2×C4×C3⋊S3φ: C4×S3/C12C2 ⊆ Aut C672C6:2(C4xS3)144,169
C63(C4×S3) = C2×S3×Dic3φ: C4×S3/D6C2 ⊆ Aut C648C6:3(C4xS3)144,146

Non-split extensions G=N.Q with N=C6 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C6.1(C4×S3) = C12.29D6φ: C4×S3/Dic3C2 ⊆ Aut C6244C6.1(C4xS3)144,53
C6.2(C4×S3) = C12.31D6φ: C4×S3/Dic3C2 ⊆ Aut C6244C6.2(C4xS3)144,55
C6.3(C4×S3) = C6.D12φ: C4×S3/Dic3C2 ⊆ Aut C624C6.3(C4xS3)144,65
C6.4(C4×S3) = C62.C22φ: C4×S3/Dic3C2 ⊆ Aut C648C6.4(C4xS3)144,67
C6.5(C4×S3) = C8×D9φ: C4×S3/C12C2 ⊆ Aut C6722C6.5(C4xS3)144,5
C6.6(C4×S3) = C8⋊D9φ: C4×S3/C12C2 ⊆ Aut C6722C6.6(C4xS3)144,6
C6.7(C4×S3) = C4×Dic9φ: C4×S3/C12C2 ⊆ Aut C6144C6.7(C4xS3)144,11
C6.8(C4×S3) = Dic9⋊C4φ: C4×S3/C12C2 ⊆ Aut C6144C6.8(C4xS3)144,12
C6.9(C4×S3) = D18⋊C4φ: C4×S3/C12C2 ⊆ Aut C672C6.9(C4xS3)144,14
C6.10(C4×S3) = C2×C4×D9φ: C4×S3/C12C2 ⊆ Aut C672C6.10(C4xS3)144,38
C6.11(C4×S3) = C8×C3⋊S3φ: C4×S3/C12C2 ⊆ Aut C672C6.11(C4xS3)144,85
C6.12(C4×S3) = C24⋊S3φ: C4×S3/C12C2 ⊆ Aut C672C6.12(C4xS3)144,86
C6.13(C4×S3) = C4×C3⋊Dic3φ: C4×S3/C12C2 ⊆ Aut C6144C6.13(C4xS3)144,92
C6.14(C4×S3) = C6.Dic6φ: C4×S3/C12C2 ⊆ Aut C6144C6.14(C4xS3)144,93
C6.15(C4×S3) = C6.11D12φ: C4×S3/C12C2 ⊆ Aut C672C6.15(C4xS3)144,95
C6.16(C4×S3) = S3×C3⋊C8φ: C4×S3/D6C2 ⊆ Aut C6484C6.16(C4xS3)144,52
C6.17(C4×S3) = D6.Dic3φ: C4×S3/D6C2 ⊆ Aut C6484C6.17(C4xS3)144,54
C6.18(C4×S3) = Dic32φ: C4×S3/D6C2 ⊆ Aut C648C6.18(C4xS3)144,63
C6.19(C4×S3) = D6⋊Dic3φ: C4×S3/D6C2 ⊆ Aut C648C6.19(C4xS3)144,64
C6.20(C4×S3) = Dic3⋊Dic3φ: C4×S3/D6C2 ⊆ Aut C648C6.20(C4xS3)144,66
C6.21(C4×S3) = S3×C24central extension (φ=1)482C6.21(C4xS3)144,69
C6.22(C4×S3) = C3×C8⋊S3central extension (φ=1)482C6.22(C4xS3)144,70
C6.23(C4×S3) = Dic3×C12central extension (φ=1)48C6.23(C4xS3)144,76
C6.24(C4×S3) = C3×Dic3⋊C4central extension (φ=1)48C6.24(C4xS3)144,77
C6.25(C4×S3) = C3×D6⋊C4central extension (φ=1)48C6.25(C4xS3)144,79

׿
×
𝔽