Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=C4

Direct product G=N×Q with N=C5×Q8 and Q=C4
dρLabelID
Q8×C20160Q8xC20160,180

Semidirect products G=N:Q with N=C5×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊1C4 = Q8⋊F5φ: C4/C1C4 ⊆ Out C5×Q8408-(C5xQ8):1C4160,84
(C5×Q8)⋊2C4 = Q82F5φ: C4/C1C4 ⊆ Out C5×Q8408+(C5xQ8):2C4160,85
(C5×Q8)⋊3C4 = Q8×F5φ: C4/C1C4 ⊆ Out C5×Q8408-(C5xQ8):3C4160,209
(C5×Q8)⋊4C4 = Q8⋊Dic5φ: C4/C2C2 ⊆ Out C5×Q8160(C5xQ8):4C4160,42
(C5×Q8)⋊5C4 = D42Dic5φ: C4/C2C2 ⊆ Out C5×Q8404(C5xQ8):5C4160,44
(C5×Q8)⋊6C4 = Q8×Dic5φ: C4/C2C2 ⊆ Out C5×Q8160(C5xQ8):6C4160,166
(C5×Q8)⋊7C4 = C5×Q8⋊C4φ: C4/C2C2 ⊆ Out C5×Q8160(C5xQ8):7C4160,53
(C5×Q8)⋊8C4 = C5×C4≀C2φ: C4/C2C2 ⊆ Out C5×Q8402(C5xQ8):8C4160,54

Non-split extensions G=N.Q with N=C5×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×Q8).C4 = Q8.F5φ: C4/C1C4 ⊆ Out C5×Q8808+(C5xQ8).C4160,208
(C5×Q8).2C4 = D4.Dic5φ: C4/C2C2 ⊆ Out C5×Q8804(C5xQ8).2C4160,169
(C5×Q8).3C4 = C5×C8○D4φ: trivial image802(C5xQ8).3C4160,192

׿
×
𝔽