metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊2Dic5, Q8⋊2Dic5, C20.56D4, C5⋊5C4≀C2, (C5×D4)⋊5C4, (C5×Q8)⋊5C4, C4○D4.1D5, (C2×C10).3D4, C20.30(C2×C4), (C4×Dic5)⋊2C2, (C2×C4).41D10, C4.Dic5⋊4C2, C4.3(C2×Dic5), C4.31(C5⋊D4), (C2×C20).20C22, C22.3(C5⋊D4), C2.8(C23.D5), C10.29(C22⋊C4), (C5×C4○D4).1C2, SmallGroup(160,44)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊2Dic5
G = < a,b,c,d | a4=c10=1, b2=a2, d2=c5, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >
(1 20 14 6)(2 16 15 7)(3 17 11 8)(4 18 12 9)(5 19 13 10)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 31 14 36)(2 37 15 32)(3 33 11 38)(4 39 12 34)(5 35 13 40)(6 26 20 21)(7 22 16 27)(8 28 17 23)(9 24 18 29)(10 30 19 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 18)(7 17)(8 16)(9 20)(10 19)(21 39 26 34)(22 38 27 33)(23 37 28 32)(24 36 29 31)(25 35 30 40)
G:=sub<Sym(40)| (1,20,14,6)(2,16,15,7)(3,17,11,8)(4,18,12,9)(5,19,13,10)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,31,14,36)(2,37,15,32)(3,33,11,38)(4,39,12,34)(5,35,13,40)(6,26,20,21)(7,22,16,27)(8,28,17,23)(9,24,18,29)(10,30,19,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,18)(7,17)(8,16)(9,20)(10,19)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)>;
G:=Group( (1,20,14,6)(2,16,15,7)(3,17,11,8)(4,18,12,9)(5,19,13,10)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,31,14,36)(2,37,15,32)(3,33,11,38)(4,39,12,34)(5,35,13,40)(6,26,20,21)(7,22,16,27)(8,28,17,23)(9,24,18,29)(10,30,19,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,15)(4,14)(5,13)(6,18)(7,17)(8,16)(9,20)(10,19)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40) );
G=PermutationGroup([[(1,20,14,6),(2,16,15,7),(3,17,11,8),(4,18,12,9),(5,19,13,10),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,31,14,36),(2,37,15,32),(3,33,11,38),(4,39,12,34),(5,35,13,40),(6,26,20,21),(7,22,16,27),(8,28,17,23),(9,24,18,29),(10,30,19,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,18),(7,17),(8,16),(9,20),(10,19),(21,39,26,34),(22,38,27,33),(23,37,28,32),(24,36,29,31),(25,35,30,40)]])
D4⋊2Dic5 is a maximal subgroup of
D5×C4≀C2 C42⋊D10 C40.93D4 C40.50D4 D8⋊5Dic5 D8⋊4Dic5 D20⋊18D4 D20.38D4 D20.39D4 D20.40D4 (D4×C10)⋊21C4 2+ 1+4⋊D5 2+ 1+4.D5 2- 1+4⋊2D5 2- 1+4.2D5 C60.98D4 C60.99D4 Q8⋊3Dic15 C5⋊2U2(𝔽3)
D4⋊2Dic5 is a maximal quotient of
C20.32C42 C20.57D8 C20.26Q16 C4⋊C4⋊Dic5 C10.29C4≀C2 C42.7D10 C42.8D10 C60.98D4 C60.99D4 Q8⋊3Dic15
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | 8B | 10A | 10B | 10C | ··· | 10H | 20A | 20B | 20C | 20D | 20E | ··· | 20J |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 10 | 10 | 10 | 10 | 2 | 2 | 20 | 20 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | - | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | D10 | Dic5 | Dic5 | C4≀C2 | C5⋊D4 | C5⋊D4 | D4⋊2Dic5 |
kernel | D4⋊2Dic5 | C4.Dic5 | C4×Dic5 | C5×C4○D4 | C5×D4 | C5×Q8 | C20 | C2×C10 | C4○D4 | C2×C4 | D4 | Q8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
Matrix representation of D4⋊2Dic5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 9 |
17 | 1 | 0 | 0 |
40 | 24 | 0 | 0 |
0 | 0 | 0 | 32 |
0 | 0 | 32 | 0 |
34 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 1 |
7 | 34 | 0 | 0 |
1 | 34 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,32,0,0,0,0,9],[17,40,0,0,1,24,0,0,0,0,0,32,0,0,32,0],[34,40,0,0,1,0,0,0,0,0,40,0,0,0,0,1],[7,1,0,0,34,34,0,0,0,0,32,0,0,0,0,40] >;
D4⋊2Dic5 in GAP, Magma, Sage, TeX
D_4\rtimes_2{\rm Dic}_5
% in TeX
G:=Group("D4:2Dic5");
// GroupNames label
G:=SmallGroup(160,44);
// by ID
G=gap.SmallGroup(160,44);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,86,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^10=1,b^2=a^2,d^2=c^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations
Export