metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8⋊2F5, D20⋊2C4, D10.3D4, Dic5.22D4, C5⋊2C4≀C2, (C4×F5)⋊2C2, (C5×Q8)⋊2C4, C4.F5⋊2C2, C4.4(C2×F5), C20.4(C2×C4), Q8⋊2D5.2C2, C2.9(C22⋊F5), C10.8(C22⋊C4), (C4×D5).10C22, SmallGroup(160,85)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊2F5
G = < a,b,c,d | a4=c5=d4=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd-1=a-1b, dcd-1=c3 >
Character table of Q8⋊2F5
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 8A | 8B | 10 | 20A | 20B | 20C | |
size | 1 | 1 | 10 | 20 | 2 | 4 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 20 | 20 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | -i | 1 | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | i | 1 | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | 1 | -i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | 1 | i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | -1+i | -1-i | 1-i | 1+i | 2 | 0 | 0 | -2 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ12 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -1-i | -1+i | 1+i | 1-i | 2 | 0 | 0 | -2 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ13 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 1+i | 1-i | -1-i | -1+i | 2 | 0 | 0 | -2 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 1-i | 1+i | -1+i | -1-i | 2 | 0 | 0 | -2 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 4 | 4 | 0 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ16 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ17 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | -√5 | √5 | orthogonal lifted from C22⋊F5 |
ρ18 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | √5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ19 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal faithful |
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(21 36 26 31)(22 38 30 34)(23 40 29 32)(24 37 28 35)(25 39 27 33)
G:=sub<Sym(40)| (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(21,36,26,31)(22,38,30,34)(23,40,29,32)(24,37,28,35)(25,39,27,33)>;
G:=Group( (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(21,36,26,31)(22,38,30,34)(23,40,29,32)(24,37,28,35)(25,39,27,33) );
G=PermutationGroup([[(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(21,36,26,31),(22,38,30,34),(23,40,29,32),(24,37,28,35),(25,39,27,33)]])
Q8⋊2F5 is a maximal subgroup of
SD16⋊3F5 SD16⋊2F5 Q16⋊5F5 Q16⋊F5 (C2×Q8)⋊6F5 D5⋊C4≀C2 D4⋊F5⋊C2 D60⋊2C4 D60⋊5C4 D20⋊2Dic3 C5⋊U2(𝔽3)
Q8⋊2F5 is a maximal quotient of
D10.1D8 C10.C4≀C2 D20⋊C8 C20.C42 D10.Q16 (C2×Q8).F5 Dic5.12Q16 D60⋊2C4 D60⋊5C4 D20⋊2Dic3
Matrix representation of Q8⋊2F5 ►in GL6(𝔽41)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 0 | 3 | 3 |
0 | 0 | 38 | 19 | 38 | 0 |
0 | 0 | 0 | 38 | 19 | 38 |
0 | 0 | 3 | 3 | 0 | 22 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,22,38,0,3,0,0,0,19,38,3,0,0,3,38,19,0,0,0,3,0,38,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[1,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,40,0,0,0,0,1,40,0,0,0,0,0,40,0,0,0,1,0,40] >;
Q8⋊2F5 in GAP, Magma, Sage, TeX
Q_8\rtimes_2F_5
% in TeX
G:=Group("Q8:2F5");
// GroupNames label
G:=SmallGroup(160,85);
// by ID
G=gap.SmallGroup(160,85);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,103,86,579,297,69,2309,1169]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^5=d^4=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of Q8⋊2F5 in TeX
Character table of Q8⋊2F5 in TeX