Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic5

Direct product G=N×Q with N=C2×C4 and Q=Dic5
dρLabelID
C2×C4×Dic5160C2xC4xDic5160,143

Semidirect products G=N:Q with N=C2×C4 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic5 = C23⋊Dic5φ: Dic5/C5C4 ⊆ Aut C2×C4404(C2xC4):Dic5160,41
(C2×C4)⋊2Dic5 = C10.10C42φ: Dic5/C10C2 ⊆ Aut C2×C4160(C2xC4):2Dic5160,38
(C2×C4)⋊3Dic5 = C2×C4⋊Dic5φ: Dic5/C10C2 ⊆ Aut C2×C4160(C2xC4):3Dic5160,146
(C2×C4)⋊4Dic5 = C23.21D10φ: Dic5/C10C2 ⊆ Aut C2×C480(C2xC4):4Dic5160,147

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic5 = C20.10D4φ: Dic5/C5C4 ⊆ Aut C2×C4804(C2xC4).Dic5160,43
(C2×C4).2Dic5 = C42.D5φ: Dic5/C10C2 ⊆ Aut C2×C4160(C2xC4).2Dic5160,10
(C2×C4).3Dic5 = C203C8φ: Dic5/C10C2 ⊆ Aut C2×C4160(C2xC4).3Dic5160,11
(C2×C4).4Dic5 = C20.55D4φ: Dic5/C10C2 ⊆ Aut C2×C480(C2xC4).4Dic5160,37
(C2×C4).5Dic5 = C20.4C8φ: Dic5/C10C2 ⊆ Aut C2×C4802(C2xC4).5Dic5160,19
(C2×C4).6Dic5 = C2×C4.Dic5φ: Dic5/C10C2 ⊆ Aut C2×C480(C2xC4).6Dic5160,142
(C2×C4).7Dic5 = C4×C52C8central extension (φ=1)160(C2xC4).7Dic5160,9
(C2×C4).8Dic5 = C2×C52C16central extension (φ=1)160(C2xC4).8Dic5160,18
(C2×C4).9Dic5 = C22×C52C8central extension (φ=1)160(C2xC4).9Dic5160,141

׿
×
𝔽